yolo 深度学习_YOLO目标检测在LINUX系统下的配置使用

本文介绍了YOLO(You Only Look Once)目标检测算法,强调了其在实时性和精度上的优势。通过详细步骤,展示了在Linux系统中安装Darknet、下载权重文件、编译运行的过程,最后利用OpenCV进行目标检测,成功实现了YOLO的部署应用。
摘要由CSDN通过智能技术生成

YOLO简介

文章作者发表了一篇《You Only Look Once: Unified, Real-Time Object Detection》提出目标检测方法,简称YOLO。

b8f15e08f43df7869a781112959ae962.png

和其他同为深度学习目标检测算法相比,YOLO算法实时性更加好,精度也很高,因为其采用了端到端的网络。

cca15f043a9c0f6ab69349d9be7c68e5.png

这是网络的结构,熟悉深度学习的同学应该很熟悉YOLO结构了,当然,从上图我们可以大致分析出他的算法结构。

这里,我们就不拘泥于具体的算法实现。

b03dc4473151511012a4310ff2e68b0b.png

与其他主流算法的比较。

如果您尚未安装Darknet,则应先进行安装。而不是阅读所有的内容:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值