机器模型的可解释分析-测算feature importance

本文介绍了三种计算特征重要性(feature importance)的方法:Mean Decrease Impurity、Permutation Importance和Drop Column Importance,讨论了它们的优劣以及在多重共线性问题上的偏见。文中提到,Permutation Importance因计算高效且适用于多种模型而成为主流方法。特征重要性有助于理解模型中哪些特征最重要,但无法揭示特征影响的正负方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先推荐一本经典好书《可解释的机器学习》,Christoph Molnar著,朱明超翻译,公司的大佬也是通过学习这本书有了很多很有价值的见解~以下是我的读书笔记以及思考。

宏观来说,构建机器学习模型的商业应用场景有两种:

  • 预测问题:给定x, 预测y.
    • 典型应用场景,如满房率预测,外卖配送时间预测,google流感趋势预测,沃尔玛啤酒与尿布等等。
    • 这类问题一般可容忍一个‘black box model’, 因此降低了对于Y理论框架的要求和特征工程的难度,一个高精度的模型, f(x1, x2,…xp)和f*(x1, x2,…xp)可以相差很远,符号都可以相反;
    • 缺点:极差的业务可解释性和因果推断的能力,如上面的例子,换系数依然成立。。怎么和业务解释?
  • 优化问题: 给定x的范围,寻找最优y下对应的x*.
    • x可以理解成业务中可落地的抓手、策略,y是我们的kpi/okr。
    • 典型场景:定价(GMV=f(price) s.t.price >=cost);
    • 我们更关心的是 Y| do X 而不是Y|X, 也就是关注因果而非相关性,最明显的特点是我们会更关心模型特征X 对Y 的影响方式和水平,同时希望模型是稳健且可解释的。

在机器学习insight这个话题下,一般有几个特别值得解释的课题(可参考 yong总结 ):
- 哪些特征在模型中是最重要的(feature importance);
- 关于某一条记录的预测,每一个特征是如何影响到最终的预测结果的? (部分依赖图);
- 从大量的记录整体来看,每一个特征是如何影响模型的预测的?(SHAP values)

(有点懵,是不是,不要慌)首先我们来各个击破~

第一步,如何获得稳健可靠的特征重要性(feature importance)?

特征重要性的作用 -> 快速的让你知道哪些因素是比较重要的,但是不能得到这个因素对模型结果的正负向影响,同时传统方法对交

### 如何评估PCA-LDA组合降维后特征的重要性 在应用PCA(主成分分析)和LDA(线性判别分析)组合进行降维之后,评估新特征的重要性能帮助理解模型并优化其表现。以下是几种常用的方法来衡量这些特征的重要性: #### 使用方差贡献率评价PCA效果 对于PCA部分,在转换过程中产生的每一个主成分都具有对应的方差值,该数值反映了此维度上数据分布的离散程度。可以通过计算各个主成分所占总方差的比例——即方差贡献率,以此作为初步判断依据之一[^1]。 ```python from sklearn.decomposition import PCA pca = PCA() X_pca = pca.fit_transform(X) explained_variance_ratio = pca.explained_variance_ratio_ print(explained_variance_ratio) ``` #### 利用载荷矩阵解析各原始变量的影响 通过查看PCA变换后的载荷矩阵(loading matrix),能够得知原输入空间中的每个属性与新的主成分之间的关联强度。绝对值较大的元素意味着相应变量在此方向上的投影较强,从而间接表明它对该主成分形成的贡献较大[^3]。 #### 基于LDA分离度指标考量类间差异 进入LDA阶段后,则更关注不同类别样本间的区分能力。可以采用Fisher准则函数或者广义瑞利商等形式化表达式定量描述各类中心距离远近关系;另外还可以观察W-1B的最大特征值及其相应的特征向量,它们指示出了最佳划分超平面的方向以及权重分配情况[^4]。 ```python from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda = LDA(n_components=2) X_lda = lda.fit_transform(X, y) # 获取LDA组件系数 lda_components_ = lda.scalings_ print(lda_components_) ``` #### 综合考虑业务逻辑下的实际意义 尽管上述统计学手段提供了量化视角下关于特征重要性的见解,但在某些应用场景里还需要结合领域专业知识做出最终评判。例如金融风控建模时,即便某个衍生指标看似微不足道,但如果能有效捕捉潜在风险信号则不可忽视其价值所在[^5]。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值