AB实验分析方法论 - matching

本文介绍了AB实验分析中的Matching方法,特别是在处理渗透率低或去除干扰因素时的应用。详细阐述了Propensity Score Matching(PSM)的逻辑、步骤、优缺点,并提供了特征选择的建议。匹配方法如PSM旨在确保实验组和控制组的观测变量平衡,以准确评估策略影响。
摘要由CSDN通过智能技术生成

AB分析有一个总体的思路是这样子滴~
在这里插入图片描述
这次我们来讲一讲AB实验分析过程中的一个基本方法论 Matching
Matching的方法其实大家在日常工作中都用过,一般是在大盘整体对比得不到显著影响的时候,继续寻找特征相似的细分用户进行对比分析,这其实是在‘术’这个层次把问题解决了。这篇文章呢,就帮你系统的梳理一下Matching的思想和逻辑,让你不但有术,亦有道。

matching啥时候用

  1. 渗透率低:比如这个功能只影响了某一批人,所以在分析大盘整体情况时,效果往往不显著,这时需要根据用户的特征行为找到相似的用户,转变为分析这波用户在受到策略后产生的效果,进而评估策略或者功能的好坏。
  2. 去除干扰因素,得到因果影响:去除其他变量对用户的干扰,通过matching找到特征相似的用户,只研究策略带来的因果影响

matching有啥方法

  • PSM : 自变量为个体的各个控制变量、历史行为等特征,并对组别变量做概率回归,最后根据得到的概率的score来匹配控制组与实验组中score相近的个体。
  • CEM:跟据所有个体的变量特征进行完全匹配,连续型特征需要做分桶处理,离散型特征如果值比较多,也可以做分组处理。

今天先focus在PSM上,毕竟是最常用的方法:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值