AB分析有一个总体的思路是这样子滴~
这次我们来讲一讲AB实验分析过程中的一个基本方法论 Matching。
Matching的方法其实大家在日常工作中都用过,一般是在大盘整体对比得不到显著影响的时候,继续寻找特征相似的细分用户进行对比分析,这其实是在‘术’这个层次把问题解决了。这篇文章呢,就帮你系统的梳理一下Matching的思想和逻辑,让你不但有术,亦有道。
matching啥时候用
- 渗透率低:比如这个功能只影响了某一批人,所以在分析大盘整体情况时,效果往往不显著,这时需要根据用户的特征行为找到相似的用户,转变为分析这波用户在受到策略后产生的效果,进而评估策略或者功能的好坏。
- 去除干扰因素,得到因果影响:去除其他变量对用户的干扰,通过matching找到特征相似的用户,只研究策略带来的因果影响。
matching有啥方法
- PSM : 自变量为个体的各个控制变量、历史行为等特征,并对组别变量做概率回归,最后根据得到的概率的score来匹配控制组与实验组中score相近的个体。
- CEM:跟据所有个体的变量特征进行完全匹配,连续型特征需要做分桶处理,离散型特征如果值比较多,也可以做分组处理。
今天先focus在PSM上,毕竟是最常用的方法: