黎曼猜想?

黎曼猜想,源于19世纪数学家黎曼的论文《论小于一个给定值的素数个数》,是关于黎曼ζ函数非平凡零点的重大未解问题。至今所有已知的非平凡零点都位于Re(s)=1/2线上,这一现象引发了众多数学家的探索。该猜想与素数分布密切相关,影响着数论和复分析领域的发展。尽管历经多次计算验证,黎曼猜想仍未被证明,但其在数学界的影响力持续增长。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

\zeta (x)的所有非平凡零点都在Re=1/2的这条线上。

这就是黎曼的猜想。

介绍黎曼猜想之前先看看数学界关于素数(质数)的研究:素数就是只有1和本身的约数就是素数。

1、素数的研究

欧几里得定理,证明了素数是无穷多了:(反证法)

人们如何获取质数,(埃及)埃拉拖色尼筛选法:

 

 继续发展,既然素数有无限多个,有没有公式知道素数在一定范围的公式:

2、素数计数函数(Prime-counting function(高斯勒让德公式)

 

 3、德国数学家(黎曼出现)

格奥尔格·弗雷德里希·波恩哈德·黎曼(1826-1866)德国数学家,黎曼几何学创始人,复变函数论创始人之一。1859年被任命为柏林科学院通讯院士,提交了一篇关于数论的论文,《论小于一个给定值的素数个数》。

 黎曼居然给出了素数计数函数的准确表达式:

 这个函数分为两部分:

说一下黎曼函数 \zeta \left ( x \right )

 函数领域使用x,复数领域使用s。

 \zeta \left ( s \right )=0;

有无数个根,总体可以分为俩类。

(1)平凡解,s=-2n,也就是所有负偶数。这个解看上去就比较简单,也很容易求,所以叫做平凡解,也叫做\zeta \left ( x \right ) 函数的平凡零点。

(2)非平凡解:s=a+bi,也就是复数解,也就是非平凡零点的解。

黎曼的猜想就是非平凡零点的实部re=1/2。

4、黎曼素数计数函数

 

5、 \zeta \left ( x \right )是如何扩展到复数域的?

大家也都知道欧拉推出一个等式,所有自然数的和最后计算到-1/12?

 

 

黎曼函数\zeta \left ( x \right ) 的定义域是s>1,s\inR   \Rightarrow Re(s)>1,s\inC,实数大于1,后来解析为复数,只要复数的实部大于1都可以。

注意:要证明黎曼猜想的注意定义域。后来黎曼通过解析延拖,也就是函数处处可导,延拖之s<1。通过解析延拖:

\zeta \left ( -1 \right )=-1/12

\zeta \left ( -2 \right )=0

\zeta \left ( -3 \right )=1/120

 6、黎曼猜想的发展

1、1896年法国学者阿达玛.普森,证明了Re(s)\in(0,1),黎曼猜想的实部都在0~1之间。

2、1903年,格拉姆计算出15个非平凡零点都在1/2上,后来计算了138个全部满足黎曼猜想。

3、1932年,西格尔研究黎曼手稿,黎曼以前遗留下来的,研究出来西格尔黎曼公式

4、1936年计算机计算出来1041个非平凡零点;1953年计算出来1104个 ;1982年计算出来3亿个非平凡零点;IMB的公益活动计算零点(zetaGird)共计算出来1万亿个零点。

到目前为止黎曼猜想都还是正确的。

。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

复分析数学还是比较值得关注,复数更加贴近自然,更加贴近宇宙的规律。

曾经在想,为什么需要研究质数,从宇宙的角度来看,质数相当于一个独立的星系或者组织,没有子系统;合数相当于有很多个子系统,比如太阳系(好多行星),行星下又有卫星,是不是特别的形象。加油oligei!!!!!!!!!!!!!!!

期待有人可以证明黎曼猜想。有部分图片来自网上,希望留言讨论撒!!!!!!!!

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值