
分三个小节简单介绍一下左、右极限。
一、极限与左、右极限的联系
二、如何求左、右极限
三、左、右极限的常见应用
一、极限与左、右极限的联系


比较这三个定义我们会发现:

也就是说我们平时所求的极限,其实本质上都是先求了左、右极限,然后二者相等,才得到了我们的函数极限。
即:

二、如何求左、右极限
但实际上,我们发现我们很少这样做。很少先求左右极限,然后再比较得到极限。
这是因为我们数学分析研究的基本上都是连续函数,而连续函数在定义域内,左右极限(非区间端点处)都是存在且相等的,且等于这一点的函数值。
上面这句话,就意味着我们求连续函数在一点左极限、右极限、极限时,就是求得这一点的函数值。

所以我们在求连续函数的左右极限时,就是把这点带入即可。

三、左、右极限的常见应用
我们考查左右极限的题目,挑选的都是一些有可能左右极限不同的(含有不连续点)函数:如分段函数、含绝对值的函数、自变量趋于无穷的指数函数…
(一)判断这些特殊函数的极限是否存在


(二)判断函数在某点的连续性
根据定义判断连续性时,需要用到左右极限。


后续再据情况补充。