怎么判断要用左右极限_函数左、右极限简介

博客介绍了左、右极限相关知识。极限本质上是先求左右极限且二者相等得到。对于连续函数,求左右极限就是求该点函数值。常见考查含不连续点的特殊函数,可用于判断函数极限是否存在以及函数在某点的连续性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

f5ace1e7ff23f36cf18665f6a5913130.png

分三个小节简单介绍一下左、右极限。

一、极限与左、右极限的联系

二、如何求左、右极限

三、左、右极限的常见应用

一、极限与左、右极限的联系

8751e5c5f77c0a80e7fdc34b2a29958e.png

db81d63beeb9a20d91997bfd6e8a84e7.png

比较这三个定义我们会发现:

cea79390982cc9bc36fd9421d8fb22ad.png

也就是说我们平时所求的极限,其实本质上都是先求了左、右极限,然后二者相等,才得到了我们的函数极限。

即:

cf7520b0808dfaf98e1bbe3199e538f6.png

二、如何求左、右极限

但实际上,我们发现我们很少这样做。很少先求左右极限,然后再比较得到极限。

这是因为我们数学分析研究的基本上都是连续函数,而连续函数在定义域内,左右极限(非区间端点处)都是存在且相等的,且等于这一点的函数值。

上面这句话,就意味着我们求连续函数在一点左极限、右极限、极限时,就是求得这一点的函数值。

e71025828e29dbae336b306009b6cd8f.png

所以我们在求连续函数的左右极限时,就是把这点带入即可。

9a7b96f2176d42097271a568576fefff.png

三、左、右极限的常见应用

我们考查左右极限的题目,挑选的都是一些有可能左右极限不同的(含有不连续点)函数:如分段函数、含绝对值的函数、自变量趋于无穷的指数函数…

(一)判断这些特殊函数的极限是否存在

3bfcd008ab415acfb8e72444a054e3a9.png

f2736d3ee8833adfd4190e6a910c53b9.png

(二)判断函数在某点的连续性

根据定义判断连续性时,需要用到左右极限。

44bf1624ffa163d247091a9f54fced79.png

90b2a3b72f6cbe4c3c7603fe594cbe2b.png

后续再据情况补充。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值