用manim证明函数的左右极限

http://t.csdnimg.cn/2pVdFicon-default.png?t=N7T8http://t.csdnimg.cn/2pVdF在上一节的最后两个示例中,我们看到了两个不存在的限制。然而,对于每个例子来说,每个限制不存在的原因是不同的。

我们看一下下面的例子:

\mathop {\lim }\limits_{t \to 0} \,\,\cos \left( {\frac{\pi }{t}} \right)

 极限不存在,因为函数没有固定为单个值  t 走近 t=0。越接近  t=0  我们移动得越厉害,函数振荡得越厉害,为了存在一个极限,函数必须稳定到一个单一的值。

from manim import *  

class CosLimit(Scene):  
    def construct(self):  
        # 设置坐标轴  
        axes = Axes(  
            x_range=[-0.25, 0.25, 0.1],  # x 显示范围  
            y_range=[-1, 1.5, 1],        # y 显示范围  
            axis_config={"color": BLUE},  # 坐标轴颜色  
        )  
        
        # 创建函数: cos(pi/t)  
        cos_function = axes.plot(lambda t: np.cos(np.pi / t), x_range=[-0.5, 0.5], color=RED,stroke_width=5)  
        
        # 标签设置  
        function_label = axes.get_graph_label(cos_function, label='\\cos\\left(\\frac{\\pi}{t}\\right)')  
        
        # 添加坐标轴和函数到场景中  
        self.play(Create(axes), Create(cos_function), Write(function_label))  
        self.wait(2)  # 等待 2 秒以观察结果  

        # 创建两个点  
        point1 = Dot(axes.c2p(0.1, np.cos(np.pi / 0.1)), color=RED)  # 第一个点的初始位置  
        point2 = Dot(axes.c2p(-0.1, np.cos(np.pi / -0.1)), color=GREEN)  # 第二个点的初始位置  
        
        # 添加点到场景  
        self.play(Create(point1), Create(point2))  
        self.wait(1)  # 等待 1 秒以观察点  

        # 动画:使两个点移动到极限位置 (0, np.cos(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yasen.M

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值