泛函分析笔记06:Lp与lp空间

2.2 l p l^p lp L p L^p Lp空间

首先介绍三个常用不等式。

  • p , q > 0 , 1 p + 1 q = 1 p, q>0, \quad \frac{1}{p}+\frac{1}{q}=1 p,q>0,p1+q1=1,则对 ∀ a , b ∈ K \forall a, b \in \mathbb{K} a,bK

∣ a b ∣ ≤ ∣ a ∣ p p + ∣ b ∣ q q |a b| \leq \frac{|a|^{p}}{p}+\frac{|b|^{q}}{q} abpap+qbq

  • Hölder不等式

p , q > 0 , 1 p + 1 q = 1 p, q>0, \quad \frac{1}{p}+\frac{1}{q}=1 p,q>0,p1+q1=1,

(1) ∀ a n , b n ∈ K ( n ∈ N ) \forall a_{n}, b_{n} \in \mathbb{K}(n \in \mathbb{N}) an,bnK(nN)
∑ n = 1 ∞ ∣ a n b n ∣ ≤ ( ∑ n = 1 ∞ ∣ a n ∣ p ) 1 p ( ∑ n = 1 ∞ ∣ b n ∣ q ) 1 q \sum_{n=1}^{\infty}\left|a_{n} b_{n}\right| \leq\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{n=1}^{\infty}\left|b_{n}\right|^{q}\right)^{\frac{1}{q}} n=1anbn(n=1anp)p1(n=1bnq)q1
(2) 设 E E E R \mathbb{R} R 中Lebesgue可测集, x , y x, y x,y E E E 上可测, 则
∫ E ∣ x ( t ) y ( t ) ∣ d t ≤ ( ∫ E ∣ x ( t ) ∣ p d t ) 1 p ( ∫ E ∣ y ( t ) ∣ q d t ) 1 q \int_{E}|x(t) y(t)| d t \leq\left(\int_{E}|x(t)|^{p} d t\right)^{\frac{1}{p}}\left(\int_{E}|y(t)|^{q} d t\right)^{\frac{1}{q}} Ex(t)y(t)dt(Ex(t)pdt)p1(Ey(t)qdt)q1

  • Minkowski不等式

1 ≤ p < ∞ 1 \leq p<\infty 1p<, 则

(1) ∀ a n , b n ∈ K ( n ∈ N ) \forall a_{n}, b_{n} \in \mathbb{K}(n \in \mathbb{N}) an,bnK(nN)
( ∑ n = 1 ∞ ∣ a n + b n ∣ p ) 1 p ≤ ( ∑ n = 1 ∞ ∣ a n ∣ p ) 1 p + ( ∑ n = 1 ∞ ∣ b n ∣ p ) 1 p \left(\sum_{n=1}^{\infty}\left|a_{n}+b_{n}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{n=1}^{\infty}\left|b_{n}\right|^{p}\right)^{\frac{1}{p}} (n=1an+bnp)p1(n=1anp)p1+(n=1bnp)p1
(2) 设 E E E R \mathbb{R} R 中Lebesgue可测集, x , y x, y x,y E E E 上可测, 有
( ∫ E ∣ x ( t ) + y ( t ) ∣ p d t ) 1 p ≤ ( ∫ E ∣ x ( t ) ∣ p d t ) 1 p + ( ∫ E ∣ y ( t ) ∣ p d t ) 1 p \left(\int_{E}|x(t)+y(t)|^{p} d t\right)^{\frac{1}{p}} \leq\left(\int_{E}|x(t)|^{p} d t\right)^{\frac{1}{p}}+\left(\int_{E}|y(t)|^{p} d t\right)^{\frac{1}{p}} (Ex(t)+y(t)pdt)p1(Ex(t)pdt)p1+(Ey(t)pdt)p1

例1:( l p l^p lp空间 )设 1 ≤ p < ∞ , ℓ p = { x = { ξ n } n = 1 ∞ : ξ n ∈ K ( n ∈ 1 \leq p<\infty, \quad \ell^{p}=\left\{x=\left\{\xi_{n}\right\}_{n=1}^{\infty}: \xi_{n} \in \mathbb{K} \quad(n \in\right. 1p<,p={x={ξn}n=1:ξnK(n N), ∑ n = 1 ∞ ∣ ξ n ∣ p < ∞ } \left.\sum_{n=1}^{\infty}\left|\xi_{n}\right|^{p}<\infty\right\} n=1ξnp<}, 通常加法和数乘, 则 ℓ p \ell^{p} p 是一个线性空间,
定义
∥ x ∥ = ( ∑ n = 1 ∞ ∣ ξ n ∣ p ) 1 p , ∀ x ∈ ℓ p \|x\|=\left(\sum_{n=1}^{\infty}\left|\xi_{n}\right|^{p}\right)^{\frac{1}{p}}, \quad \forall x \in \ell^{p} x=(n=1ξnp)p1,xp
( ℓ p , ∥ ⋅ ∥ ) \left(\ell^{p},\|\cdot\|\right) (p,) 成为一个可分的 ( B ) (B) (B) 空间。

例2:( L p L^p Lp空间 )设 E E E R \mathbb{R} R 中 Lebesgue 可测集, 1 ≤ p < ∞ 1 \leq p<\infty 1p<, 记 L p ( E ) L^{p}(E) Lp(E) E E E 上 可测且 p − p- p 幂 可积 ( ∫ E ∣ x ( t ) ∣ p d t < ∞ ) \left(\int_{E}|x(t)|^{p} d t<\infty\right) (Ex(t)pdt<) 的函数 x x x 全体组成的 空间, 其中几乎处处相等的函数视为同一元, 在通常 加法和数乘下是一个线性空间,定义
∥ x ∥ = ( ∫ E ∣ x ( t ) ∣ p d t ) 1 p , x ∈ L p ( E ) \|x\|=\left(\int_{E}|x(t)|^{p} d t\right)^{\frac{1}{p}}, \quad x \in L^{p}(E) x=(Ex(t)pdt)p1,xLp(E)
( L p ( E ) , ∥ ⋅ ∥ ) \left(L^{p}(E),\|\cdot\|\right) (Lp(E),) 是一个 ( B ) (B) (B) 空间 ( 1 ≤ p < ∞ ) (1 \leq p<\infty) (1p<)

  • L p [ a , b ] L^p[a,b] Lp[a,b] 是可分的,进而对 ∀ \forall Lebesgue可测集 E ⊂ R E\subset \mathbb{R} ER L p ( E ) L^p(E) Lp(E)是可分的。( 1 ≤ p < ∞ 1\le p<\infty 1p<
  • 3
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值