多元隐函数求导方法

多元隐函数求导方法


一、一个方程的情形

1.F(x,y)=0

隐函数存在定理 1 设函数F(x, y)在点P(x0,y0)的某一邻域内具有连续的偏导数(条件1),且
F ( x 0 , y 0 ) = 0 F(x0,y0)=0 F(x0,y0)=0

F y ′ ( x 0 , y 0 ) ≠ 0 F_{y}^{'} (x0,y0)\ne0 Fy(x0,y0)=0

(条件2)则方程F(x, y) = 0在点 ( , ) 0 0 P x y 的
某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数y = f (x),它满足条件 ,并有
d y d x = − F x ′ F y ′ \frac{dy}{dx}=-\frac{F_{x}^{'}}{F_{y}^{'} } dxdy=FyFx
以上同时为隐函数的求导公式为

  1. F(x, y, z) = 0

    隐函数存在定理 2 设函数F(x, y, z)在点 P(x0,y,z0)某一领域内有连续的偏导数(条件1),且F(x0,y,z0)=0,
    F z ’ ( x 0 , y 0 , z 0 ) ≠ 0 F_{z}^{’}(x0,y0,z0)\ne 0 Fzx0,y0,z0)=0
    (条件2)则方程F(x, y,z)=0在点P(x0,y0,z0)的某一领域内恒有唯一确定一个单值连续且具有连续偏导数的函数z=f(x,y),它满足条件z0=f(x0,y0),并有
    ∂ z ∂ x = − F x ′ F z ′ \frac{\partial z }{\partial x}=-\frac{F_{x}^{'} }{F_{z}^{'} } xz=FzFx

    ∂ z ∂ y = − F y ′ F z ′ \frac{\partial z }{\partial y}=-\frac{F_{y}^{'} }{F_{z}^{'} } yz=FzFy

    对于求二次偏导,可以使用两种该方法:1、等式两边同时求偏导,利用类似一元隐函数的隐函数求导。

    2、利用上文展示的求导公式。

    warning

    在解法一中,我们在对x和y求偏导时,仍要将他们看作是z的自变量,亦指将z看作是(x,y)的二元函数;

    在解法二中,我们求F(x,y,z)的三个偏导数时要注意,要将xyz看作独立的自变量。

​ 3、对于一些式子还可以对于等式两边取微分。

二、方程组的情形
{ F ( x , y , u , v ) = 0 G ( x , y , u , v ) = 0 \left\{\begin{matrix} F(x,y,u,v)=0 \\ G(x,y,u,v)=0 \end{matrix}\right. {F(x,y,u,v)=0G(x,y,u,v)=0
隐函数存在定理3 设F(x, y,u,v)、G(x, y,u,v)在
点P(x0,y0,u0,v0)的某一领域内有对各个变量的连续偏导数(条件1,//可见连续偏导是最高级条件),且F(x0,y0,u0,v0)=0,G(x0,y0,u0,v0)=0,(条件2)且偏导数所组成的函数行列式(雅可比式
J = ∂ ( F , G ) ∂ ( u , v ) = ∣ ∂ F ∂ u ∂ F ∂ v ∂ G ∂ u ∂ G ∂ v ∣ J=\frac{\partial (F,G)}{\partial (u,v)}=\begin{vmatrix} \frac{\partial F}{\partial u}&\frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u}&\frac{\partial G}{\partial v} \end{vmatrix} J=(u,v)(F,G)=uFuGvFvG
在P点函数值不等于零(条件3),则方程组在P 的某一领域内恒有唯一确定一组单值连续且具有连续偏导数的函数u=u(x,y),v=v(x,y),且将P点带入,函数成立(条件4//与条件2类似,指符合P点要求)。

​ 对于偏导数的求值,应当采用推导证明法。

例:
{ F ( x , y , u , v ) = 0 G ( x , y , u , v ) = 0 \left\{\begin{matrix} F(x,y,u,v)=0 \\ G(x,y,u,v)=0 \end{matrix}\right. {F(x,y,u,v)=0G(x,y,u,v)=0
有隐函数组:
{ v = v ( x , y ) u = u ( x , y ) \left\{\begin{matrix} v=v(x,y) \\ u=u(x,y) \end{matrix}\right. {v=v(x,y)u=u(x,y)
则:
{ F ( x , y , u ( x , y ) , v ( x , y ) ) ≡ 0 G ( x , y , u ( x , y ) , v ( x , y ) ) ≡ 0 \left\{\begin{matrix} F(x,y,u(x,y),v(x,y))\equiv 0\\ G(x,y,u(x,y),v(x,y))\equiv 0 \end{matrix}\right. {F(x,y,u(x,y),v(x,y))0G(x,y,u(x,y),v(x,y))0
两边对于x求导
{ F x + F u ⋅ ∂ u ∂ x + F v ⋅ ∂ v ∂ x = 0 G x + G u ⋅ ∂ u ∂ x + G v ⋅ ∂ v ∂ x = 0 \left\{\begin{matrix} F_{x}+F_{u}\cdot \frac{\partial u}{\partial x}+F_{v}\cdot \frac{\partial v}{\partial x}=0 \\ G_{x}+G_{u}\cdot \frac{\partial u}{\partial x}+G_{v}\cdot \frac{\partial v}{\partial x}=0 \end{matrix}\right. {Fx+Fuxu+Fvxv=0Gx+Guxu+Gvxv=0
这是
∂ v ∂ x , ∂ v ∂ x \frac{\partial v}{\partial x},\frac{\partial v}{\partial x} xvxv
的线性方程组,对于这个线性方程组运用克拉默法则,求解。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值