yolov3网络结构图_YOLOv3原理代码赏析

c46905dc72b9138e1b93aa0cb757a32e.png

YOLO原理代码赏析

写在前面

YOLO作为一个小而美,快而准的目标检测网络,在互联网上饱受赞誉,从yolov1->yolov3,也是在一直在不断进化,作为one-stage检测界的扛把子,只要做目标检测,没有理由不去了解YOLO!
YOLO代码实现有多个版本,其中论文的作者使用C和CUDA自己撸了一个DL框架并用于目标检测Darknet,但是这玩意毕竟小作坊产物,只是为了自家YOLO开发的框架,不太实用,但是用哪个框架实现并不是关键,关键的是one-stage的核心思想!
在github上搜索,YOLO版本也层出不穷,本次赏析的代码就是来自检索YOLO关键词排名第一的代码,Keras-YOLOv3.顾名思义,用keras实现的,此外是v3的版本,那么v1v2呢?有最好的肯定不管他们了噻(但从研究的角度出发,依然需要认真阅读v1v2的paper,因为v3没有正式发表paper,只是挂在arxiv上面,很多地方没说清楚)
为何qwe的代码能排第一呢?私以为:

  • 代码结构简洁清晰,感觉要比其他家代码清爽
  • keras作为当下最流行的DL框架,自然也是好用到飞起

作为一个完整的目标检测工程,肯定要有数据集格式转换,数据读取(预处理),网络部分,后处理部分几大模块,作为一个学术分享会,我只分析网络部分和Loss关键部分来讲,其他的就请自行研究吧.

YOLO进化历史

YOLO是one-stage目标检测网络
YOLO不需要先提出ROI感兴趣,直接预测bboxes

  • v1:在分类回归bbox的时候使用了全连接层
  • v2:backbone使用了BN;引入了anchor的概念并聚类获取预设anchor;回归bbox方式做了变化,摒弃了全连接预测bbox的方法
  • v3:backbone引入了resnet的思想;同样使用了anchor并引入了FPN结构;loss在bbox分类时用BCE_loss

YOLO网络部分

YOLO网络部分可以分成特征提取backbone主体(darknet_body),Neck脖子(make_last_layer, upsamples),和头部(YOLO_head) (ps:脖子部分这个名词是我凭空臆造的哈)

  • backbone负责提取特征,输出feature map
  • 脖子部分功能:YOLO要把feature map中蕴含的信息转换为坐标,类别,这就需要把feature map的维度使用conv拉到指定的维度,结合anchor训练来输出关键性信息;同时为了提高回归位置精度,借鉴了fpn的思想,需要多个scale的feature map来提供最后的输出,因此还要用到一些upsample和concat
  • 头部功能:得到了网络的输出,要和真实数据标注对接上计算loss,需要对数据的格式进行reshape,同时对原始grid_cell中的(x,y,w,h)做相应的激活,yolo_head主要干这些 我们可以借鉴netron来分析网络层,整个yolo_v3_body包含252层,组成如下:

ec9db5dd4f8535503c7d85b5cdfc4ccd.png

整个网络就这么多内容,下面详细分解代码并讲解:

YOLO网络全貌—yolo_body

def yolo_body(inputs, num_anchors, num_classes)
先分析形参:输入数据, 多少个anchor, 分类类别
默认状态下,YOLO借鉴fpn有3个scale的feature_map输出,在每个feature_map的每个格子(grid_cell)中,使用了3个anchor,这样排列组合出来就是9种不同的anchor
对于类别,COCO有80类,因此num_classes=80 对于初学者,分析一个网络最好的方式就是先摸清tensor在网络中shape的变化规律,可以帮助理解原理.
整体分析,

  • 输入图像分辨率(416,416)经过5个stage,输出feature_map的scale应该为416/32,也就是(13,13)
  • YOLO预测bbox的思想是,以backbone输出的feature_map尺寸(13, 13)看做坐标参考系,也就是所谓的栅格grid.这样可以划分出13x13个格子,把这个棋盘格对应到原图上就相当于是建立了一个坐标体系.每个格子去预测三个bbox,每个bbox负责预测一个对象,同时每个bbox有一个预设的anchor基准,把确定出bbox的信息(x,y,w,h,c,…80classes…)放在每个格子的通道中
    因此,网络一个scale输出raw_tensor的shape应该为:(13,13,3*85)
    我们来算一哈, 一共有13x13个位置,每个位置有3个bbox,可以算出最多可以预测13x13x3个bbox(同时需要13x13x3个预设anchor),每个bbox都是相互独立的

设计好了网络大致的模型后,我们应该考虑如何让输出的Tensor就是我们需要的结果,这就是训练过程要做的事情.
要想让输出tensor更接近我们想要的结果,需要合理设计loss,以及使用一些其他的trick哦. 下面进入代码详解:
首先就是搭建整个YOLO网络的函数,传入形参为:训练数据,anchor数量,分类类别

def yolo_body(inputs, num_anchors, num_classes):#传入多有少个anchor
    """Create YOLO_V3 model CNN body in Keras."""
    ##--------------网络backbone--------------
    darknet = Model(inputs, darknet_body(inputs))#darknet_body 网络backbone
    ##--------------网络脖子Neck--------------
    x, y1 = make_last_layers(darknet.output, 512, num_anchors*(num_classes+5))#make_last_layer1
    
    x = compose(#构建第二个scale的
            DarknetConv2D_BN_Leaky(256, (1,1)),
            UpSampling2D(2))(x)
    x = Concatenate()([x, darknet.layers[152].output])
    x, y2 = make_last_layers(x, 256, num_anchors*(num_classes+5))#make_last_layer2
    
    x = compose(#构建第三个scale
            DarknetConv2D_BN_Leaky(128, (1,1)),
            UpSampling2D(2))(x)
    x = Concatenate()([x,darknet.layers[92].output])
    x, y3 = make_last_layers(x, 128, num_anchors*(num_classes+5))#make_last_layer3

    return Model(inputs, [y1,y2,y3])#y1,y2,y3构成不同scale的feature组,此处不能concat,因为scale不一样,统一放到一个list中

backbone–darknet_body

darknet_body(x)主干网络搭建的函数
下面是v3中darknet的网络结构图

def darknet_body(x):#darknet主干网络
    '''Darknent body having 52 Convolution2D layers'''
    x = DarknetConv2D_BN_Leaky(32, (3,3))(x)
    x = resblock_body(x, 64, 1)
    
    x = resblock_body(x, 128, 2)
    x = resblock_body(x, 256, 8)
    x = resblock_body(x, 512, 8)
    x = resblock_body(x, 1024, 4)
    return x

借鉴了resnet的思想,但并不是拿过来直接用,否则keras都有相应库,何必重新敲?
下面就是darknet与resnet的找不同环节:

Darknet有52个Conv2D:

s1: 1+1x2 +1=4 channel->64
s2: 2x2 + 1=5 channel->128
s3: 2x8 +1=17 channel->256
s4: 2x8 +1=17 channel->512
s5: 2x4 +1=9 channel->1024
sumUp = 52! Bingo!

为什么只有52层,说好的Darknet-53呢?

YOLO的每个Res_Unit中借鉴了Resnet中Bottleneck的思想,但不同于凯明的方法,YOLO使用1x1 的卷积核将通道拉低,然后再用3x3的卷积核将通道拉回来,每个block均使用了残差pixel-add方式. 在每个stage连接处有专门的Con2D(3x3, s=2)来降低feature_map的尺寸,仔细的同学会发现这点与Resnet搞法是不一样的.

注意:Darknet-53指的是整个分类网络有53层,包括了FC,但是YOLOv3没有使用avgpool和fc YOLO的backbone只是借鉴的残差网络的shortcut残差思想,并非照搬Resnet-50的结构!!通道变化:64->128->256->512->1024

对比一下Resnet

Resnet是用Bottleneck Block模块重复构建 Resnet在stage连接处为了匹配维度,用到了名为Projection的方式,更加严谨,详情可以查看我的另外一篇博客经典CNN网络源码剖析

下面看一哈resblock_body残差块是怎么实现的

def resblock_body(输入feature_map, 输出通道数, block重复次数)=>return feature_map
这个是构建基于darknet的小轮子, 每用一次resblock_body() ,意味着feature map的scale缩小一倍,在resblock_body开始有专门的conv(s=2, k=3)来降分辨率,darknent同样没有用pooling的方式降scale.

def resblock_body(x, num_filters, num_blocks):
    '''
    x:输入, num_filters:输出通道, num_blocks,重复块的次数
    '''
    # Darknet uses left and top padding instead of 'same' mode
    x = ZeroPadding2D(((1,0),(1,0)))(x)
    x = DarknetConv2D_BN_Leaky(num_filters, (3,3), strides=(2,2))(x)#此处使用了stride=2降低分辨率(不用pooling)
    #重复构建残差网络,这个算基本的block
    for i in range(num_blocks):
        y = compose(
                DarknetConv2D_BN_Leaky(num_filters//2, (1,1)),#使用1x1的conv先将通道先降//2,
                DarknetConv2D_BN_Leaky(num_filters, (3,3)))(x)#使用3x3将通道后拉升回去
        x = Add()([x, y])#add
    return x

基本Conv2D模块

就是普通的Conv2d->BN->LeakyReLU结构,也就是上面YOLOv3结构示意图中的最小单元DBL

def DarknetConv2D_BN_Leaky(*args, **kwargs):
    """Darknet Convolution2D followed by BatchNormalization and LeakyReLU."""
    no_bias_kwargs = {'use_bias': False}
    no_bias_kwargs.update(kwargs)
    return compose(
        DarknetConv2D(*args, **no_bias_kwargs),
        BatchNormalization(),
        LeakyReLU(alpha=0.1))

编程Tips:

args是一个整体对象(以元组的形式集合),*args则是多个对象(元组中所有的元素) *args是将元组打开, **是指以字典方式传入元素,形成的对象是一个字典

脖子部分—make_last_layers

x, y1 = make_last_layers(darknet.output, 512, num_anchors*(num_classes+5))最后一层拉通道
输出为两部分,x和y,x是用于fpn的feature_map, y作为送入YOLO_head的输出
darknet.output网络输出
num_filters输出通道数量(512)
out_filters调整输出通道(num_anchors安可的数量)
1x1,num_filters->3x3,2*num_filters->1x1,num_filters->
x可以看成feature_map,y可以看成最后的输出,送入到后面的YOLO_HEAD
fpn的效果,脖子部分其实是一种类FPN结构.

FPN介绍

FPN(feature Pyramid Networks)层级金字塔,
输入图像经过多个Stage的Conv之后,feature_map的语义信息高级,网络更深了,感受野更大,能获取更高级的语义信息,分类效果会更好.
但是目标检测不仅仅是分类就完了,还需要确定bbox精准的位置信息,在一个小size的feature_map上预测原图中object的位置,肯定会有较大偏差
fpn就是为了统一这两个矛盾而生,通道先降后升再add,将不同scale的信息融合,输出多个新的feature_map.FPN结构可以嵌入到之前的主干网络,构成一个新的结构,输出不同scale的feature_map

d0bdc45f7aa9a3b9168a88f17dfe2d54.png

YOLO中借鉴FPN的方式

make_last_layers()=>x,y
返回的x作为下一级FPN结合的feature_map,经过Upsample分别得到两个高分辨率scale的feature map
YOLO在upsample后面使用了concat,原FPN使用的是pixel-add 原FPN的lateral connection中使用了1x1的conv2d将通道全部固定为256,也就是金字塔右侧feature_map的通道数全都是256,然鹅YOLO的并没有这样做
如YOLO结构图所见,YOLOv3一共有三个不同的scale的输出,输出tensor的尺寸不一样,但是通道数都是255.
YOLO是基于grid_cell处理bbox,有种分而治之的思想,每个格子都有3个anchor,只负责预测中心点位于自己格子内物体
我们分析一下,如果使用(13x13) (26x26) (52x52)构建棋盘网格,肯定是格子越多回归坐标越精细,这也从宏观直觉上映证了FPN的优势

YOLO Head

上面计算的都是相对坐标$(t_x, t_y, t_w, t_h, t_o)$
结合anchor,输出最后bbox的绝对坐标(x,y,w,h)
anchor只care形状,不care位置,就是(h,w),因此相乘就可以了
获取得到的YOLO feature,也就是后面的$(grid_h, grid_w, anchor_{num} * 85)$
feature形变解析
一维YOLO网络出来的anchor是(h,w,anchor_nums5这种形式),在axis=2存储每个anchor这个维度上是连续存储,因此使用reshape就可以将这个分开 reshape成[N, H, W, (num_anchorsnum_classes+5)]bbox参数回归的计算公式
$b_x=sigma(t_x)+c_x$
$b_y=sigma(t_y)+c_y$
$b_w=p_wE^t_w$
$b_h=p_hE^t_h$

6ca97bc583ccc698f26d74dcd98c05eb.png
如果需要把anchor_num放置在axis=1维度,可以使用reshape之后再transpose

理解:
使用$sigmoid$激活函数$t_x,t_y$是将其值域限制在(0,1),这样每个点的中心坐标不会偏移出grid_cell,保证了每个格子的anchor只负责预测其中的物体.

下面是YOLO_HEAD代码部分:

def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):
    """Convert final layer features to bounding box parameters."""
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

    grid_shape = K.shape(feats)[1:3] # height, width
    grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
        [1, grid_shape[1], 1, 1])
    grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
        [grid_shape[0], 1, 1, 1])
    grid = K.concatenate([grid_x, grid_y])
    grid = K.cast(grid, K.dtype(feats))

    feats = K.reshape(#将feature map重新排列,经每个anchor独立分开用于计算
        feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

    # Adjust preditions to each spatial grid point and anchor size.
    box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats))
    box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats))#结合生成的anchor_tensor进行计算
    box_confidence = K.sigmoid(feats[..., 4:5])#object的置信度c
    box_class_probs = K.sigmoid(feats[..., 5:])#80个类别

    if calc_loss == True:
        return grid, feats, box_xy, box_wh
    return box_xy, box_wh, box_confidence, box_class_probs

YOLO loss分析

只有YOLO v1明确提出了loss公式,V2和V3都使用了anchor的概念,因此计算loss的方式做出了调整
针对YOLO这种预测bbox的方式,需要确定下面的关键信息: (x, y), (w, h), confidence, class
下面是v1的loss function

3f4b830d2b142d52dab52b5fdb5988f8.png

v3对bbox进行预测的时候,对anchor中心点(xy)也使用了BCE,这么搞还是挺神奇的,至于为啥我还没研究透彻(难道是因为前面用了Sigmoid输出就不接MSE?)
对anchor的wh使用了MSE,这点倒算正常,以上这些在v3论文中没有明确说明.
有一点v3论文中是说了的,对80个类别分类时使用了BCE,这样避免了类间竞争(softmax+CE多分类判定概率最大的类作为输出,这样会形成竞争).
v3每次对b-box进行predict时,输出和v2一样都是$(t_x, t_y, t_w, t_h, t_o)$,然后通过公式1计算出绝对的(x, y, w, h, c)。
组合上面几部分损失,最后加到一起就可以组成总的loss_funciton下面来看一下代码怎么实现的:

def yolo_loss(args, anchors, num_classes, ignore_thresh=.5, print_loss=False):
    '''Return yolo_loss tensor

    Parameters
    ----------
    yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_body
    y_true: list of array, the output of preprocess_true_boxes
    anchors: array, shape=(N, 2), wh
    num_classes: integer
    ignore_thresh: float, the iou threshold whether to ignore object confidence loss

    Returns
    -------
    loss: tensor, shape=(1,)

    '''
    num_layers = len(anchors)//3 # default setting
    yolo_outputs = args[:num_layers]
    y_true = args[num_layers:]
    anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]]
    input_shape = K.cast(K.shape(yolo_outputs[0])[1:3] * 32, K.dtype(y_true[0]))
    grid_shapes = [K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0])) for l in range(num_layers)]
    loss = 0
    m = K.shape(yolo_outputs[0])[0] # batch size, tensor
    mf = K.cast(m, K.dtype(yolo_outputs[0]))

    for l in range(num_layers):#分为3个scale
        object_mask = y_true[l][..., 4:5]
        true_class_probs = y_true[l][..., 5:]

        grid, raw_pred, pred_xy, pred_wh = yolo_head(yolo_outputs[l],
             anchors[anchor_mask[l]], num_classes, input_shape, calc_loss=True)
        pred_box = K.concatenate([pred_xy, pred_wh])

        # Darknet raw box to calculate loss.
        raw_true_xy = y_true[l][..., :2]*grid_shapes[l][::-1] - grid
        raw_true_wh = K.log(y_true[l][..., 2:4] / anchors[anchor_mask[l]] * input_shape[::-1])
        raw_true_wh = K.switch(object_mask, raw_true_wh, K.zeros_like(raw_true_wh)) # avoid log(0)=-inf
        box_loss_scale = 2 - y_true[l][...,2:3]*y_true[l][...,3:4]

        # Find ignore mask, iterate over each of batch.
        ignore_mask = tf.TensorArray(K.dtype(y_true[0]), size=1, dynamic_size=True)
        object_mask_bool = K.cast(object_mask, 'bool')
        def loop_body(b, ignore_mask):
            true_box = tf.boolean_mask(y_true[l][b,...,0:4], object_mask_bool[b,...,0])
            iou = box_iou(pred_box[b], true_box)
            best_iou = K.max(iou, axis=-1)
            ignore_mask = ignore_mask.write(b, K.cast(best_iou<ignore_thresh, K.dtype(true_box)))
            return b+1, ignore_mask
        _, ignore_mask = K.control_flow_ops.while_loop(lambda b,*args: b<m, loop_body, [0, ignore_mask])
        ignore_mask = ignore_mask.stack()
        ignore_mask = K.expand_dims(ignore_mask, -1)

        # K.binary_crossentropy is helpful to avoid exp overflow.
        xy_loss = object_mask * box_loss_scale * K.binary_crossentropy(raw_true_xy, raw_pred[...,0:2], from_logits=True)#anchor中心点xy用了BCE?
        wh_loss = object_mask * box_loss_scale * 0.5 * K.square(raw_true_wh-raw_pred[...,2:4])#w,h回归使用了MSE_LOSS
        confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True)+ 
            (1-object_mask) * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True) * ignore_mask
        class_loss = object_mask * K.binary_crossentropy(true_class_probs, raw_pred[...,5:], from_logits=True)#针对每个类别使用BCE,而不是softmax+CE

        xy_loss = K.sum(xy_loss) / mf
        wh_loss = K.sum(wh_loss) / mf
        confidence_loss = K.sum(confidence_loss) / mf
        class_loss = K.sum(class_loss) / mf
        loss += xy_loss + wh_loss + confidence_loss + class_loss
        if print_loss:
            loss = tf.Print(loss, [loss, xy_loss, wh_loss, confidence_loss, class_loss, K.sum(ignore_mask)], message='loss: ')
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值