Jensen不等式/琴生不等式的证明 数学归纳法

Table of Contents

凸函数

​​​​​​​琴生不等式/Jensen不等式

用数学归纳法来证明琴生不等式/Jensen不等式


​​​​​​​

​​​​​​​凸函数

​​​​​​​

一个函数如果满足

那么这个函数就是凸函数。

严格凸函数:≤改为<

​​​​​​​琴生不等式/Jensen不等式

如果是凸函数,那么对于任意的,以及的权重系数,且,则如下不等式成立

用数学归纳法来证明琴生不等式/Jensen不等式

已知当n = 2时,此结论成立,如下:

对于一般的n用数学归纳法来证明。

假设n = N时此结论成立,需要证明n = N + 1时此结论成立

此时我们有N + 1 个点,以及权重

假设n = N时此结论成立,根据公式(1)即得出

 

不等式左边:

 

不等式右边:

 

所以

根据凸函数的定义

因为,所以公式(4)可以根据公式(2)(n=2的情况)类比得出(5)

其中

结合不等式(3)(5)得出N+1的公式

n = 2的情形已知成立,从n= N的情形出发,证明了n = N + 1的情形。

至此,公式证明完毕。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值