python 卡方分布值_饱和模型与偏差计算R方与p值

本文探讨了在Python中如何利用卡方分布计算模型的R方和p值。通过零模型、创建的模型和饱和模型,解释了R2的计算方式,特别是在饱和模型的作用下保证其取值范围为[0,1]。文中还详细介绍了模型间的偏差计算,如残余偏差和零偏差,用于确定模型间的显著差异,并给出实际案例计算p值。" 122216416,11656815,Uint16Bit图像处理:PyTorch与TensorFlow的对比,"['pytorch', 'tensorflow', '计算机视觉', '深度学习', '图像处理']
摘要由CSDN通过智能技术生成
引言: logistic回归中,我们了解到R 2 和P值的计算方法。 但josh starmer老师指出,广义线性模型中R 2 更常见的计算方法还包括饱和模型(参考:Logistic回归:R2与P-value的计算 )。 在Logistic模型中,LL(saturated model)=0,故可以忽略LL(saturated model); 但其在其他类型广义线性模型中并不一定为0,不能忽略LL(saturated model)。

1. 零模型、创建的模型、饱和模型

  1. 零模型(null model): 含一个参数的模型,也可记作空模型。假设在如下的正态分布数据中,标准差已知,故我们只需要估计均值以拟合该正态分布曲线。仅含1个参数(一个均值)的模型是最简单的模型,故称该模型为零模型。基于零模型的似然值与似然对数值计算如下:似然值=0.03;似然值的对数值=-3.51。似然值和似然值对数值的计算可参考先前的笔记:最大似然估计法拟合logistic回归曲线;概率与似然值。
41a7c8cdec665210396cbe16efbce5e4.png
  1. 创建的模型(proposed model):在同样的数据中,标准差已知,通过估计2个均值参数拟合两条正态分布曲线的含2个参数的模型。这一模型是我们根据数据的实际情况创建的个性化模型,参数个数介于零模型与饱和模型之间,是我们感兴趣的目标模型。基于该模型的似然值与似然对数值计算如下:似然值=3.57;似然值的对数值=1.27。
7a42afc007644606efa4d97cac3231ae.png
  1. 饱和模型:每个数据点对应一个参数的超级模型,称为饱和模型。该模型所含的参数数量是我们所能估计参数的最大数量。在饱和模型中,似然值与似然对数值计算如下:似然值=1291.5;似然值的对数值=7.16。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值