c语言已知加速度求位移速度,知道初速度知道加速度求位移的公式

本文详细总结了高中物理中的匀变速直线运动公式,包括自由落体、竖直上抛和平抛运动,以及万有引力和机械能的相关知识。讨论了加速度、速度、位移、时间、力和能量之间的关系,特别强调了在不同运动情况下的计算方法和关键公式。此外,还提到了功和能的概念,以及机械能守恒定律的应用。
摘要由CSDN通过智能技术生成

知道初速度知道加速度求位移的公式以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!

22f1c06dd1b75ce1049206c19d8f3e9b.png

知道初速度知道加速度求位移的公式

高一物理公式总结

一、质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as

3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t

7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0

8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差

9.主要物理量及单位:初速(Vo):m/s

加速度(a):m/s^2 末速度(Vt):m/s

时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h

注:(1)平均速度是向量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/

2) 自由落体

1.初速度Vo=0

2.末速度Vt=gt

3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

(2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。

3) 竖直上抛

1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )

3.有用推论Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (丢掷点算起)

5.往返时间t=2Vo/g (从丢掷落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动 万有引力

1)平抛运动

1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt

3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2

5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2

合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo

7.合位移S=(Sx^2+ Sy^2)1/2 ,

位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo

注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平丢掷速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R

5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR

7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)

8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)

周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s

角速度(ω):rad/s 向心加速度:m/s2

注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。

3)万有引力

1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)

2.万有引力定律F=Gm1m2/r^2 G=6.67×10^-11N·m^2/kg^2方向在它们的连线上

3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m)

4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2

5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s

6.地球同步卫星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度

注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,执行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。

机械能

1.功

(1)做功的两个条件: 作用在物体上的力.

物体在里的方向上通过的距离.

(2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J)

1J=1N*m

当 0<= a 0 F做正功 F是动力

当 a=派/2 w=0 (cos派/2=0) F不作功

当 派/2<= a

(3)总功的求法:

W总=W1+W2+W3……Wn

W总=F合Scosa

2.功率

(1) 定义:功跟完成这些功所用时间的比值.

P=W/t 功率是标量 功率单位:瓦特(w)

此公式求的是平均功率

1w=1J/s 1000w=1kw

(2) 功率的另一个表示式: P=Fvcosa

当F与v方向相同时, P=Fv. (此时cos0度=1)

此公式即可求平均功率,也可求瞬时功率

1)平均功率: 当v为平均速度时

2)瞬时功率: 当v为t时刻的瞬时速度

(3) 额定功率: 指机器正常工作时最大输出功率

实际功率: 指机器在实际工作中的输出功率

正常工作时: 实际功率≤额定功率

(4) 机车运动问题(前提:阻力f恒定)

P=Fv F=ma+f (由牛顿第二定律得)

汽车启动有两种模式

1) 汽车以恒定功率启动 (a在减小,一直到0)

P恒定 v在增加 F在减小 尤F=ma+f

当F减小=f时 v此时有最大值

2) 汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)

a恒定 F不变(F=ma+f) V在增加 P实逐渐增加最大

此时的P为额定功率 即P一定

P恒定 v在增加 F在减小 尤F=ma+f

当F减小=f时 v此时有最大值

3.功和能

(1) 功和能的关系: 做功的过程就是能量转化的过程

功是能量转化的量度

(2) 功和能的区别: 能是物体运动状态决定的物理量,即过程量

功是物体状态变化过程有关的物理量,即状态量

这是功和能的根本区别.

4.动能.动能定理

(1) 动能定义:物体由于运动而具有的能量. 用Ek表示

表示式 Ek=1/2mv^2 能是标量 也是过程量

单位:焦耳(J) 1kg*m^2/s^2 = 1J

(2) 动能定理内容:合外力做的功等于物体动能的变化

表示式 W合=ΔEk=1/2mv^2-1/2mv0^2

适用范围:恒力做功,变力做功,分段做功,全程做功

5.重力势能

(1) 定义:物体由于被举高而具有的能量. 用Ep表示

表示式 Ep=mgh 是标量 单位:焦耳(J)

(2) 重力做功和重力势能的关系

W重=-ΔEp

重力势能的变化由重力做功来量度

(3) 重力做功的特点:只和初末位置有关,跟物体运动路径无关

重力势能是相对性的,和参考平面有关,一般以地面为参考平面

重力势能的变化是绝对的,和参考平面无关

(4) 弹性势能:物体由于形变而具有的能量

弹性势能存在于发生弹性形变的物体中,跟形变的大小有关

弹性势能的变化由弹力做功来量度

6.机械能守恒定律

(1) 机械能:动能,重力势能,弹性势能的总称

总机械能:E=Ek+Ep 是标量 也具有相对性

机械能的变化,等于非重力做功 (比如阻力做的功)

ΔE=W非重

机械能之间可以相互转化

(2) 机械能守恒定律: 只有重力做功的情况下,物体的动能和重力势能

发生相互转化,但机械能保持不变

表示式: Ek1+Ep1=Ek2+Ep2 成立条件:只有重力做功

知道加速度,知道位移距离,求初速度

2as=vt^2-vo^2

求出速度,应知道加速度,位移以及末速度才行

s=vo t+1/2*at^2

或者知道加速度,位移和时间

知道初速度、末速度和位移求加速度

答:

^2是平方的意思,

末速度的平方-初速度的平方=2倍的加速度*位移

V^2-v^2=2as

a=(V^2-v^2)/(2s)

a=(25^2-0^2)/(2*0.03)≈10416.7m/s

物理-已知初速度(或末速度)、加速度、位移,求末速度(初速度)的公式

v末^2-v初^2=2a*s

s=1/2a*t^2

h=1/2g*t^2

s=v初*t+1/2a*t^2

Vt²-Vo²=2aS(搞定)

Vt=Vo+at

S=Vot+at²/2

只知道初速度和末速度怎么求位移或加速度

缺少条件.

至少要确定是恒定加速度,或者运动轨迹.

前一个恒定加速的话,需要时间这些量,可以用公式(v1^2-v2^2)/2a^2.

后一个就是求微分用速度确定边界条件,再微分得到加速度.

还有其他特列,但是有一点你给的条件缺乏.

只知道时间和位移 怎么求加速度和初速度 急!

答:你的问题中不确定因素太多,没法精确回答。

一、什么样的运动?是匀变速直线运动吧!

二、对于匀变速直线运动,如果只是知道某一段的时间和位移是无法求加速度和初速度的,因为一共5个量,至少要知道三个量才可以求另外两个量。假设按你说的,还需要知道末速度才可以求初速度和加速度。

三、还可能是知道连续相邻两段的位移及对应时间,这样利用这两段时间中点的瞬时速度和两点间的时间,求加速度及初速度。

总之,你的提问好令人纠结,大家都想帮你的,但你的问题的指向性太不明确了。

知道初速度,知道加速度,怎么求时间

找老师讲的公式,一般解题步骤,列公式,代数,然后解方程或者方程组。

问个物理问题.知道初速度怎么求加速度和位移

对于匀加速运动,

加速度=(末速度-初速度)/时间

位移=(末速度+初速度)×时间/2

知道位移公式怎么求加速度

高一物理公式总结

一、质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as

3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t

7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a

分页:123

在物理学中,加速度速度随时间的变化率,而速度是位置(位移)随时间的变化率。当我们知道物体随时间变化的加速度时,可以通过积分计算出速度位移。在C语言中,我们可以使用数值积分方法来近似这一过程,常见的数值积分方法包括梯形积分、辛普森积分等。 以下是一个简单的C语言程序示例,用于通过数值积分加速度数据来计算速度位移。假设我们有一个加速度数组,以及对应的采样时间间隔dt,我们将通过简单的梯形积分来近似速度位移。 ```c #include <stdio.h> // 计算速度的函数,使用梯形积分 void calculate_velocity(double acceleration[], double velocity[], int size, double dt) { for (int i = 0; i < size; ++i) { if (i == 0) { // 初始速度设为0或者根据实际情况设定 velocity[i] = 0; } else { // 使用梯形积分计算速度 velocity[i] = velocity[i - 1] + (acceleration[i - 1] + acceleration[i]) * dt / 2.0; } } } // 计算位移的函数,再次使用梯形积分 void calculate_displacement(double velocity[], double displacement[], int size, double dt) { for (int i = 0; i < size; ++i) { if (i == 0) { // 初始位移设为0或者根据实际情况设定 displacement[i] = 0; } else { // 使用梯形积分计算位移 displacement[i] = displacement[i - 1] + (velocity[i - 1] + velocity[i]) * dt / 2.0; } } } int main() { // 示例加速度数据,单位:m/s^2 double acceleration[] = {0, 2, 4, 6, 8, 10}; int size = sizeof(acceleration) / sizeof(acceleration[0]); double dt = 1.0; // 时间间隔,单位:秒 // 为速度位移数组分配空间 double velocity[size]; double displacement[size]; // 计算速度 calculate_velocity(acceleration, velocity, size, dt); // 计算位移 calculate_displacement(velocity, displacement, size, dt); // 输出结果 printf("Time(s)\tAcceleration(m/s^2)\tVelocity(m/s)\tDisplacement(m)\n"); for (int i = 0; i < size; ++i) { printf("%d\t\t%.2f\t\t\t\t%.2f\t\t\t\t%.2f\n", i * (int)dt, acceleration[i], velocity[i], displacement[i]); } return 0; } ``` 这个程序中,我们定义了两个函数`calculate_velocity`和`calculate_displacement`来分别计算速度位移,它们都使用梯形积分方法。在`main`函数中,我们定义了加速度数组、时间间隔、速度位移数组,并调用这两个函数来计算结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值