旋度的散度为零证明_梯度,散度,旋度,拉普拉斯算子的相关认知

这篇博客介绍了导数、偏导数、方向导数的概念,重点探讨了梯度、散度、旋度的含义及其在描述函数变化趋势和向量场特性中的作用。此外,还解释了拉普拉斯算子,它是标量函数梯度的散度,用于刻画函数的局部性质。
摘要由CSDN通过智能技术生成

导数

导数描述的是函数在某个维度下的瞬时变化率。

  • 输入:函数的某点(矢量)
    ,函数的定义式
  • 系统:函数的求导公式
  • 输出:变化率(标量)。

偏导数

偏导数是描述多元函数沿坐标轴的瞬时变化率。

  • 输入:函数的某点(矢量)
    ,函数的定义式
    ,轴向(单位矢量)
  • 系统:函数的偏导公式
  • 输出:沿某坐标轴的变化率(标量)。

方向导数

方向导数描述的是多元函数的某点处,沿给定方向下的瞬时变化率。

  • 输入:函数的某点(矢量)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值