神经网络(一):神经元模型与逻辑回归

本文介绍了神经网络的建模理念,重点探讨了神经元的结构,包括树突、细胞体、轴突和突触。讨论了激活函数的重要性,特别是Sigmoid函数在神经元模型中的应用,指出Sigmoid神经元如何等价于二元逻辑回归模型,可用于解决分类问题。
摘要由CSDN通过智能技术生成

一、仿生学

在经典的机器学习领域,有很多不同类型的模型,它们大致可以分为两类:一类是比较注重模型可解释性的传统统计模型,比如线性回归和逻辑回归;另一类是侧重于从结构上“模仿”数据的机器学习模型,比如监督式学习SVM和非监督式学习KMeans。

这些模型虽然在结构和形态上千差万别,但它们有一个共同的建模理念,就是首先对数据做假设,然后根据这些假设进行数学推导,并最终得到模型的公式。其中最核心的部分就是模型的假设,它直接决定了模型的适用范围,也是模型效果的保障。这些模型不但能对未知数据做预测,还能帮助我们去理解数据之间的相关关系。

但神经网络或者深度学习是一种全新的建模理念,它并不关心模型的假设以及相应的数学推导,也就是说它并不关心模型的可解释性。这个理念的目的是借鉴仿生学1的思路,利用计算机和数学模型去模拟人的大脑,因此,其中最核心的内容就是工程实现。从模型角度来讲,这种理念的建模起点是最终的模型公式,而模型效果的保障是,这样的模型能在一定程度上模仿大脑,而大脑是人类智能的基础。

这种理念下设计出来的模型有很多酷炫的名字,比如神经网络、人工智能以及深度学习等。这类模型虽然难以理解或者更准确地说,到目前为止人类还无法理解,但在某些特定应用场景里的预测效果却出奇得好,因此也常常引起争论。一部分人认为,目前的人工智能热只是一个泡沫,整个学科并没有实质性的突破;另一部分人认为人工智能已经在突破的前夜,在不远的未来,它将给人类带来巨大的便利;还有一部分人认为人工智能是极其危险的东西,我们正在创造一种新的具有智能的“生命”,也许在不远的未来,这种人造的智能会统治地球并最终毁灭人类,就像很多科幻电影里的情节那样。

以上这3种观点都有其道理2,本系列文章并不打算加入这种宏观议题争论,而是采取中立立场讨论相关的技术细节和发展趋势。相信读者通过这个系列的文章了解了人工智能的基础知识后,会对上面的话题有自己的观点。

二、神经元

由于神经网络的模拟对象是人的大脑,那么在讨论具体的模型之前,我们有必要先从生物学的角度来看看人的大脑有哪些特性。

根据生物学的研究,人脑的计算单元是神经元(neuron)。它能根据环境变化做出反应,再将信息给其他的神经元。在人脑中,大约有860亿个神经元,它们相互联结构成了极其复杂的神经系统,而后者正是人类智慧的物质基础。因此遵循人脑的生物结构,我们首先需要搭建模型来模拟人的神经元。

如图1所示,一个典型的神经元由4个部分组成。

  • 树突:一个神经元有若干个树突,它们能接收来自其他神经元的信号,并将信号传递给细胞体。
  • 细胞体:细胞体是神经元的核心,它把各个树突传递过来的信号加总起来,得到一个总的刺激信号。
  • 轴突:当细胞体内的刺激信号超过一定阈值之后,神经元的轴突会对外发送信号。
  • 突触:该神经元发送的信号(若有)将由突触向其他神经元或人体内的其他组织(对神经信号做出反应的组织)传递。需要注意的是,神经元通常有多个突触,但它们传递的信号都是一样的。
图1

将上述的神经元结构抽象成数学概念,可以得到如图1所示的神经元模型。

  • 模型的输入是数据里的自变量,比如图中的 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3。它们用圆点表示,对应着神经元里的树突。
  • 接收输入变量的是一个线性模型,在图中用正方形表示。这个线性模型对应着神经元的细胞体。值得注意的是,对于神经元中的线性模型,我们将模型中的权重项和截距项特意分开,用表示权重 w i w_i wi,用 b b b表示截距3
  • 接下来是一个非线性的激活函数 f f f(activation function),它将控制是否对外发送信号,在图中用三角形表示,对应这神经元里的轴突。在神经网络领域,常常用一个圆圈来概括地表示线性模型和激活函数,并不将两者分开,在本系列文章中,我们将沿用这一记号。
  • 将模型的各个部分联结起来得到最后的输出 f ( ∑ i w i x i + b ) f(\sum_i w_ix_i + b) f(iwi
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值