python opencv 边缘检测与抠图_3. OpenCV-Python——图像梯度算法、边缘检测、图像金字塔与轮廓检测与傅里叶变换...

这篇博客详细介绍了如何使用Python和OpenCV进行图像处理,包括图像梯度算法(Sobel算子、Scharr算子、Laplacian算子),边缘检测(Canny算法),图像金字塔(高斯金字塔和拉普拉斯金字塔),以及轮廓检测和分析。示例代码展示了如何应用这些算法,并对比了不同算子之间的差异。
摘要由CSDN通过智能技术生成

一、图像梯度算法

1、图像梯度-Sobel算子

dst = cv2.Sobel(src, ddepth, dx, dy, ksize)

ddepth:图像的深度

dx和dy分别表示水平和竖直方向

ksize是Sobel算子的大小

1 #*******************图像梯度算法**********************开始

2 importcv23 #import numpy as np

4

5 img = cv2.imread('pie.png',cv2.IMREAD_GRAYSCALE)6 cv2.imshow("img",img)7 cv2.waitKey()8 cv2.destroyAllWindows()9

10 #显示图像函数

11 defcv_show(img,name):12 cv2.imshow(name,img)13 cv2.waitKey()14 cv2.destroyAllWindows()15

16 #Sobel算子——x轴

17 sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3) #计算水平的

18 cv_show(sobelx,'sobelx')19

20 #白到黑是正数,黑到白就是负数了,所有的负数会被截断成0,所以要取绝对值

21 sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)22 sobelx = cv2.convertScaleAbs(sobelx) #取绝对值

23 cv_show(sobelx,'sobelx')24

25 #Sobel算子——y轴

26 sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)27 sobely = cv2.convertScaleAbs(sobely) #取绝对值

28 cv_show(sobely,'sobely')29

30 #求和

31 sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0) #按权重计算

32 cv_show(sobelxy,'sobelxy')33

34 #也有直接计算xy轴的————不推荐使用

35 #sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)

36 #sobelxy = cv2.convertScaleAbs(sobelxy)

37 #cv_show(sobelxy,'sobelxy')

38 #*******************图像梯度算法**********************结束

用lena图像来实际操作一下:

1 #*******************图像梯度算法-实际操作**********************开始

2 importcv23

4 #显示图像函数

5 defcv_show(img,name):6 cv2.imshow(name,img)7 cv2.waitKey()8 cv2.destroyAllWindows()9

10 img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)11 cv_show(img,'img')12

13 #分别计算x和y

14 img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)15 sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)16 sobelx =cv2.convertScaleAbs(sobelx)17 sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)18 sobely =cv2.convertScaleAbs(sobely)19 sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)20 cv_show(sobelxy,'sobelxy')21 #*******************图像梯度算法-实际操作**********************结束

      

2、图像梯度-Scharr和Laplacian算子

(1)Scharr算子

(2)Laplacian算子

(3)不同算子之间的差距

1 #*******************图像梯度算子-Scharr+laplacian**********************开始

2 importcv23 importnumpy as np4

5 #不同算子的差异

6 img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)7 sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)8 sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值