dll报错 paddle_PaddleX的C++部署的方式的几种使用方式

本文详细介绍了使用PaddleX进行C++部署时,如何处理dll错误,以及如何生成dll并分别用Python和C#进行调用。在Visual Studio下通过Cmake配置生成解决方案,编译PaddleX C++预测代码,解决缺少依赖的问题,最终实现模型预测。同时,文章提供了Python和C#调用dll的示例代码。
摘要由CSDN通过智能技术生成

飞桨-PaddleX 是飞桨全流程开发工具,集飞桨核心框架、模型库、工具及组件等深度学习开发所需全部能力于一身,打通深度学习开发全流程,并提供简明易懂的Python API,方便用户根据实际生产需求进行直接调用或二次开发,为开发者提供飞桨全流程开发的最佳实践。PaddleX_飞桨-源于产业实践的开源深度学习平台​www.paddlepaddle.org.cn

之前作者针对PaddleDetection写过一个系列文章,其中最后一篇是针对PaddlDetection的C++部署方式进行一些改造。https://zhuanlan.zhihu.com/p/145446681​zhuanlan.zhihu.com

这篇文章是根据PaddleX在Github官方的代码以及文档,将C++部署相关代码进行整理,并进行了如下工作:将官方C++预测代码在Visual Studio下生成解决方案(.sln)

将C++预测代码进行生成dll

使用python调用生成的dll

使用C#调用生成的dll

一、将官方的C++预测代码在Visual Studio下生成解决方案

准备工作:

使用工具Cmake vs2019社区版 Git(提前下载好git,不然在后期编译过程中会不成功)

依赖库:

Opencv:选择3.4.6版本https://sourceforge.net/projects/opencvlibrary/files/3.4.6/opencv-3.4.6-vc14_vc15.exe/download​sourceforge.net

Paddle预测库:选择win10下的cuda10版本。安装与编译 Windows 预测库​www.paddlepaddle.org.cn

一、首先将上述需要依赖的opencv和预测库,PaddleX下载好,并保存在某个文件夹中。如下图是作者存放的一个文件夹。

二、将opencv添加到环境变量里面,如下图所示。

三、利用Cmake软件进行编译。源码路径为cpp文件所在目录,应为里面有CMakeLists.txt文件,作者同时在该目录下创建了新的文件夹/out用于生成编译后的文件

四、点击config,选择vs2019 X64选项后,点击Generate

五、根据报错进行修改,主要修改cuda_lib、opencv、paddle_dir路径

六、再次点击Generate

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值