向前欧拉公式例题_四、机器人运动控制算法——牛顿-欧拉法动力学分析

本文详细介绍了机器人运动控制中力与运动的关系,通过牛顿-欧拉法分析动力学,涉及加速度定义、惯性张量、力矩计算,并通过例题展示了如何求解连杆的惯性力与惯性力矩,最终计算电机所需输出的力矩。
摘要由CSDN通过智能技术生成

408c4f6b8af35b3d10db0068f90945fc.png

这一章主要描述力(力矩)与运动的关系。运动是什么?牛顿给我们得回答是位置、速度(角速度)与加速度(角加速度),那力就更不用多说了,两者通过什么关系在一起呢?当然是牛顿第二定律了。

97d3ba2050d292989fd81b95fb9e0df1.png

第1小节 加速度定义以及计算

在第二章中介绍了线速度的概念,与线速度一样,这里定义线加速度,

719cceb69e000a3a2cd8eceafa979fd6.png

Q点线加速度在B系中的结果在A系中表达为:

f3a3e2c1a1f99164fac7988de7de052f.png

694e8ced03ddf751774fc333738289e9.png

在第二章中关于两坐标系不重合的情况中,线速度的表示为

bf34a380b4f51786c285aaf7c443f43d.png

等式两侧对时间求导,得

ebe37dbcbc76a4e600c82b93ce22a771.png

角加速度也同线加速度具有相似的定义

2614729889128d4344db9821d5a89174.png

若A系与C系之间是通过B系联结的,可知

cf4c5f293ef8e6fa8319a10af417c54d.png

等式左右同时对时间求导,得

759f22bf076b06b6f26e3a52b544c150.png

第2小节 惯性张量

由于实际的机器人是含有重量的,因此在转动的过程中,需要考虑机器人的惯性张量(表征物体质量分布)。

a2fbc6386fa259e34702836acc467077.png

上图表示一个刚体,坐标系建立在刚体上,惯性张量可以在任意坐标系中定义,坐标系{A}中的惯性张量可用

矩阵来表示,

6bc6d1c2246d63354ece2b52bd650d7c.png

矩阵中主对角线中的元素称为惯量矩,其余元素称为惯量积,定义分别为

135eaf56aa45d111ef8afb73c119e86c.png

式中刚体由单元dv组成,其密度为

,每个单元的位置由矢量
确定。可以看出惯性张量的矩阵是一个实对称矩阵,因此可以对其进行对角化,即

222b8ac427e0a6cc55f365a152acb6c3.png

也就是说,无论刚体是怎样的形状,无论刚体上的坐标系是怎样建立的,都会有一个只存在惯量矩而惯量积等于0的坐标系,R代表姿态矩阵。并且刚体坐标系建立得方法不同会导致其惯性张量矩阵得不同,以因此需要了解一下惯性张量矩阵得转换问题,也就是平行移轴定理。

平行移轴定理描述了一个以刚体质心为原点得坐标系平移到另一个坐标系时惯性张量得变换关系,假设{C}是以刚体质心为原点的坐标系,{A}为任意平移后的坐标系,则平行移轴定理为,

40ea22cd907a7db479284bf4be7df0e6.png

矩阵形式为

0a69bb487a0398f54269429a527cb613.png

其中,

表示
的单位矩阵,
表示质心相对于{A}系得位置。

第3小节 牛顿-欧拉法

02b08891036af1fc81152eca53fc493e.png

如图所示,空间中刚体质心处作用一外力F与外力矩N,刚体产生运动。

牛顿方程的描述为

c21323d60f2b309fb7b856443f080d91.png

欧拉方程的描述为

6af7599bd71aa5ff73bcb98ddf157a41.png

0f62e6c729bb98ea3dfe1161e0b1dc8a.png

(角)加速度的推导也跟(角)速度的推导过程一样。

对于旋转轴来说,在讲角速度的时候,有公式

26150c5ef7dec17c9e8a30f0880903f2.png

d39fe28af77ae00d24c3a88902e3987a.png

对上述公式求一阶导,得

b9c6f3127d5bcba70606b5cf4a1b5cc6.png

针对旋转轴是不存在柯氏加速度和相对加速度的,因此线加速度为

0605ec34dad7b1fceed2e7b136cfa1d0.png

对于平移轴来说,角加速度表示为

d260e86aee2ca110a2b0b3c983207a60.png

线加速度为

491e089956e09f35c7c579e0dc995635.png

同样的道理,可以得到每个连杆质心的线加速度,由于每个连杆质心坐标系相对于其连杆坐标系固定不变,因此不分旋转轴与平移轴的情况。

696d14006ff9c4e72ab716e4fc2e0442.png

计算出连杆质心的加速度后,就可以计算连杆的惯性力与惯性力矩

407815a29d011a6c2e9c90d3a43c9b8b.png

这一部分力与力矩的分析和静力分析一样,只不过增加了惯性力与惯性力矩,

bc4e89d6a5026b5cecb7230ab7a6d529.png

根据旋转轴与平移轴分类,若想要产生预期的运动,则作用在电机上的力或力矩分别为

5429dd3cd3cb34f9d02531a4fdf082bc.png

第4小节 例题分析

1d2bd3e87b3eb6e29a2be1e8f9338518.png

还是拿前一章的例子来说。已知条件,

f3f499767bf9343e81e92ab8c38da6e8.png

548890b5ffcd2aa06442ada7cf4970fb.png

首先推导速度与加速度,

066efda15e889fc89ec34981f8ade046.png

c24904f2dc7c29cc0ebc9e1d45aed3ae.png

36feb44b6a92494b6e67f036ec906afc.png

第1杆件的质心对{1}系的加速度,

dc9fc78b99341d5355305373e50fcf61.png

根据质心得加速度以及前面推导杆件的速度与加速度,可知惯性力与惯性力矩为

fe115880896b35f281b777c202a0c108.png

按照以上的方法,

e2727b41388a487778b3b8b89f65e10a.png

第2杆件的质心对{2}系的加速度,

edb5d239c5b742d47a4890e19d68efee.png

则第2杆件的惯性力与惯性力矩为,

c9031967a74b300d776a4b701889ac0e.png

接下来计算力与力矩的部分,

551ab6cf03b4cd4ffc295e1d9b07f9a4.png

6a522746b571466ab31d8f06aa4a39a6.png

最后,我们就可以算出每个轴上的电机输出力矩的大小,

5168d894bd30802ecc9e9e38b9f60e41.png

这个例子也是我在林沛群老师的课件上找到的,大家有不明白的地方可以去B站搜索。欢迎各位小伙伴留言、讨论与分享。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值