常用反函数导数_2021考研数学 高数第二章 导数与微分

58321bcfa031d982817a9fb67fd88a19.png

目录

  • 目录
  • 1. 背景
  • 2. 导数与微分的概念
    • 2.1. 导数与微分的概念
    • 2.2. 连续、可导、可微之间的关系
    • 2.3. 导数的几何意义
    • 2.4. 相关变化率
  • 3. 导数公式及求导法则
    • 3.1. 基本初等函数的导数公式
    • 3.2. 求导法则
  • 4. 高阶导数
    • 4.1. 高阶导数的定义
    • 4.2. 常用的高阶导数公式
    • 4.3. 求高阶导数的方法
  • 5. 总结

1. 背景

前段时间复习完了高数第二章的内容,我参考《复习全书·基础篇》和老师讲课的内容对这一章的知识点进行了整理,形成了这篇笔记,方便在移动设备上进行访问和后续的补充修改。

2. 导数与微分的概念

2.1. 导数与微分的概念

  • 导数
    • 概念:函数在某一点的变化率
  • 微分
    • 概念:函数值在某一点的改变量的近似值

2.2. 连续、可导、可微之间的关系

  • 连续与可导
    • 连续不一定可导
    • 可导必定连续
  • 连续与可微
    • 连续不一定可微
    • 可微必定连续
  • 可导与可微(在一元函数中)
    • 可微必定可导
    • 可导必定可微
    • 可导是可微的充分必要条件

:在多元函数中,可导(偏导)不一定可微,可导(偏导)也不一定连续

  • 证明可导必可微

根据可导定义,令

equation?tex=%5Clim%5Climits_+%7B%5CDelta+x+%5Cto+0%7D%5Cfrac%7B%5CDelta+y%7D%7B%5CDelta+x%7D+%3D+A+%5C%5C

则有

equation?tex=%5Clim%5Climits_+%7B%5CDelta+x+%5Cto+0%7D%5Cfrac%7B%5CDelta+y+-+A%5CDelta+x%7D%7B%5CDelta+x%7D+%3D+0+%5C%5C

即有

equation?tex=%5CDelta+y+-+A%5CDelta+x+%3D+o%28%5CDelta+x%29,故
equation?tex=%5CDelta+y+%3D+A%5CDelta+%2B+o%28%5CDelta+x%29,其中
equation?tex=A为常数,满足可微的定义,因此,可导必可微。
  • 证明可微必可导

根据可微定义

equation?tex=%5CDelta+y+%3D+A%5CDelta+x+%2B+o%28%5CDelta+x%29+%5C%5C

equation?tex=f%27%28x_0%29+%3D+%5Clim%5Climits_%7B%5CDelta+x+%5Cto+0%7D%5Cfrac%7BA+%5CDelta+x+%2B+o%28%5CDelta+x%29%7D%7B%5CDelta+x%7D+%3D+A+%5C%5C

导数存在,故满足可导的定义,因此可微必可导,且

equation?tex=f%27%28x%29+%3D+A.
  • 常见错误
    • equation?tex=f%28x%29在某邻域可导
    • 不能推出
      equation?tex=f%27%28x%29
      equation?tex=x_0点连续
    • 不能推出
      equation?tex=%5Clim%5Climits_%7Bx+%5Cto+x_0%7Df%27%28x%29存在
    • 题型:第一章例
      equation?tex=33,考察洛必达法则的使用条件

2.3. 导数的几何意义

导数

equation?tex=f%27%28x_0%29在几何上表示曲线
equation?tex=y+%3D+f%28x%29在点
equation?tex=%28x_0%2C+f%28x_0%29%29处切线的斜率。

:法线的斜率是切线斜率的负倒数。

2.4. 相关变化率

  • 定义

equation?tex=x+%3D+x%28t%29
equation?tex=y+%3D+y%28t%29都是可导函数,而变量
equation?tex=x
equation?tex=y之间存在某种关系,从而他们的变化率
equation?tex=%5Cdfrac%7Bdx%7D%7Bdt%7D
equation?tex=%5Cdfrac%7Bdy%7D%7Bdt%7D之间也存在一定关系,这样两个相互依赖的变化率成为
相关变化率
  • 例题(第二章例
    equation?tex=29

已知动点

equation?tex=P在曲线
equation?tex=y+%3D+x%5E3上运动,记坐标原点与点
equation?tex=P间的距离为
equation?tex=l。若点
equation?tex=P的横坐标对时间的变化率为常数
equation?tex=v_0,则当点
equation?tex=P运动到点
equation?tex=%281%2C+1%29时,
equation?tex=l对时间的变化率是___.

解:

已知

equation?tex=%5Cdfrac%7Bdx%7D%7Bdv%7D+%3D+v_0
equation?tex=l+%3D+%5Csqrt%7Bx%5E2+%2B+x%5E6%7D,则

equation?tex=%5Cfrac%7Bdl%7D%7Bdt%7D+%3D+%5Cfrac%7Bdl%7D%7Bdx%7D+%5Ccdot+%5Cfrac%7Bdx%7D%7Bdt%7D+%3D+%5Cfrac%7B2x+%2B+6x%5E5%7D%7B2%5Csqrt%7Bx%5E2+%2B+x%5E6%7D%7D+%5Ccdot+v_0+%5C%5C

带入数值

equation?tex=x+%3D+1,则

equation?tex=%5Cfrac%7Bdl%7D%7Bdt%7D+%3D+%5Cfrac%7B1+%2B+3%7D%7B%5Csqrt%7B2%7D%7Dv_0+%3D+2%5Csqrt%7B2%7D+v_0+%5C%5C

3. 导数公式及求导法则

3.1. 基本初等函数的导数公式

equation?tex=%28C%29%27+%3D+0+%5Ctag%7B2.1%7D+
equation?tex=%28x%5Ea%29%27+%3D+ax%5E%7Ba-1%7D+%5Ctag%7B2.2%7D+
equation?tex=%28a%5Ex%29%27+%3D+a%5Ex%5Cln%28a%29+%5Ctag%7B2.3%7D+
equation?tex=%28e%5Ex%29%27+%3D+e%5Ex+%5Ctag%7B2.4%7D+
equation?tex=%28%5Clog_a%5Ex%29%27+%3D+%5Cfrac%7B1%7D%7Bx%5Cln%28a%29%7D+%5Ctag%7B2.5%7D+
equation?tex=%28%5Cln+%5Cmid+x+%5Cmid+%29%27+%3D+%5Cfrac%7B1%7D%7Bx%7D+%5Ctag%7B2.6%7D+
equation?tex=%28%5Csin+x%29%27+%3D+%5Ccos%28x%29+%5Ctag%7B2.7%7D+
equation?tex=%28%5Ccos+x%29%27+%3D+-%5Csin%28x%29+%5Ctag%7B2.8%7D+
equation?tex=%28%5Ctan+x+%29%27+%3D+%5Csec%5E2%28x%29+%5Ctag%7B2.9%7D+
equation?tex=%28%5Ccot+x%29%27+%3D+-+%5Ccsc%5E2%28x%29+%5Ctag%7B2.10%7D+
equation?tex=%28%5Csec+x%29%27+%3D+%5Csec+%28x%29+%5Ctan+%28x%29+%5Ctag%7B2.11%7D+
equation?tex=%28%5Ccsc+x%29%27+%3D+%5Ccsc%5E2%28x%29+%5Ccot+%28x%29+%5Ctag%7B2.12%7D+
equation?tex=%28%5Carcsin+x%29%27+%3D+%5Cfrac%7B1%7D%7B%5Csqrt%7B1+-+x%5E2%7D%7D+%5Ctag%7B2.13%7D+
equation?tex=%28%5Carccos+x%29%27+%3D+-+%5Cfrac%7B1%7D%7B%5Csqrt%7B1+-+x%5E2%7D%7D+%5Ctag%7B2.14%7D+
equation?tex=%28%5Carctan+x%29%27+%3D+%5Cfrac%7B1%7D%7B1+%2B+x%5E2%7D+%5Ctag%7B2.15%7D+
equation?tex=%28arccot+x%29%27+%3D+%5Cfrac%7B1%7D%7B%5Csqrt%7B1+-+x%5E2%7D%7D+%5Ctag%7B2.16%7D

equation?tex=%5Csec%28x%29+%3D+%5Cdfrac%7B1%7D%7B%5Ccos%28x%29%7D
equation?tex=%5Ccsc%28x%29+%3D+%5Cdfrac%7B1%7D%7B%5Csin%28x%29%7D

3.2. 求导法则

3.2.1. 有理运算法则

equation?tex=u+%3D+u%28x%29%2C+v+%3D+v%28x%29
equation?tex=x处可导,则

equation?tex=%28u+%5Cpm+v%29%27+%3D+u%27+%5Cpm+v%27+%5Ctag%7B2.17%7D+
equation?tex=%28uv%29%27+%3D+u%27v+%2B+uv%27+%5Ctag%7B2.18%7D+
equation?tex=%28%5Cdfrac%7Bu%7D%7Bv%7D%29%27+%3D+%5Cdfrac%7Bu%27v+-+uv%27%7D%7Bv%5E2%7D+%5Ctag%7B2.19%7D+

3.2.2. 复合函数求导法

equation?tex=u+%3D+%5Cvarphi%28x%29
equation?tex=x处可导,
equation?tex=y+%3D+f%28u%29在对应点可导,则复合函数
equation?tex=y+%3D+f%5B%5Cvarphi%28x%29%5D
equation?tex=x处可导,则

equation?tex=%5Cfrac%7Bdy%7D%7Bdx%7D+%3D+%5Cfrac%7Bdy%7D%7Bdu%7D+%5Ccdot+%5Cfrac%7Bdu%7D%7Bdx%7D+%3D+f%27%28u%29%5Cvarphi%27%28x%29+%5Ctag%7B2.20%7D+
  • 推论

一个可导的奇(偶)函数,求一次导,其奇偶性发生一次变化

  • 证明推论
  1. equation?tex=f%28x%29
    奇函数

equation?tex=f%28x%29满足
equation?tex=f%28-x%29+%3D+-f%28x%29,又根据复合函数求导法则,得到
equation?tex=f%27%28-x%29+%3D+-f%27%28x%29,则

equation?tex=%5Bf%28-x%29%5D%27+%3D+-%5B-f%28x%29%5D%27+%3D+%5Bf%28x%29%5D%27+%5C%5C

equation?tex=f%27%28x%29
偶函数
  1. equation?tex=f%28x%29
    偶函数

equation?tex=f%28x%29满足
equation?tex=f%28-x%29+%3D+f%28x%29,又根据复合函数求导法则,得到
equation?tex=f%27%28-x%29+%3D+-f%27%28x%29,则

equation?tex=%5Bf%28-x%29%5D%27+%3D+-%5Bf%28x%29%5D%27+%5C%5C

equation?tex=f%27%28x%29
奇函数

3.2.3. 隐函数求导法

equation?tex=y+%3D+y%28x%29是由方程
equation?tex=F%28x%2C+y%29+%3D+x所确定的可导函数,为求得
equation?tex=y%27,可在方程
equation?tex=F%28x%2C+y%29+%3D+0两边对
equation?tex=x求导,可得到一个含有
equation?tex=y%27的方程,从中解出
equation?tex=y%27即可。

equation?tex=y%27也可由多元函数微分法中的隐函数求导公式2.21得到。

equation?tex=%5Cfrac%7Bdy%7D%7Bdx%7D+%3D+-+%5Cfrac%7BF%27_x%7D%7BF%27_y%7D+%5Ctag%7B2.21%7D+

3.2.4. 反函数的导数

equation?tex=y+%3D+f%28x%29在某区间内可导,且
equation?tex=f%27%28x%29+%5Cne+0,则其反函数
equation?tex=x+%3D+%5Cvarphi+%28x%29在对应区间内也可导,且

equation?tex=%5Cvarphi+%28y%29+%3D+%5Cfrac%7B1%7D%7Bf%27%28x%29%7D+%5Ctag%7B2.22%7D+

equation?tex=%5Cfrac%7Bdy%7D%7Bdx%7D+%3D%5Cfrac%7B1%7D%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%7D+%5C%5C

3.2.5. 参数方程求导法

equation?tex=y+%3D+y%28x%29是由参数方程

equation?tex=%7B%5Cleft%5C%7B+%5Cbegin%7Baligned%7D+%26x+%3D+%5Cvarphi+%28x%29%5C%5C+%26y+%3D+%5Cpsi+%28x%29%5C%5C+%5Cend%7Baligned%7D%5Cright.+%7D%2C+%28%5Calpha+%3C+t+%3C+%5Cbeta%29+%5C%5C

确定的函数,则

  1. equation?tex=%5Cvarphi+%28x%29
    equation?tex=%5Cpsi+%28x%29都可导,且
    equation?tex=%5Cvarphi%28t%29+%5Cne+0,则

equation?tex=%5Cfrac%7Bdy%7D%7Bdx%7D+%3D+%5Cfrac%7B%5Cpsi%28x%29%7D%7B%5Cvarphi%28x%29%7D+%5Ctag%7B2.23%7D+
  1. equation?tex=%5Cvarphi+%28x%29
    equation?tex=%5Cpsi+%28x%29都二阶可导,且
    equation?tex=%5Cvarphi%28t%29+%5Cne+0,则

equation?tex=%5Cfrac%7Bd%5E2+y%7D%7Bd%5E2+x%7D+%3D+%5Cfrac%7Bd%7D%7Bdt%7D%28%5Cfrac%7Bdy%7D%7Bdx%7D%29+%5Ccdot+%5Cfrac%7Bdt%7D%7Bdx%7D%3D+%5Cfrac%7Bd%7D%7Bdt%7D%28%5Cfrac%7B%5Cpsi+%27%28t%29%7D%7B%5Cvarphi+%27%28t%29%7D%29+%5Ccdot+%5Cfrac%7B1%7D%7B%5Cvarphi+%27%28x%29%7D+%3D+%5Cfrac%7B%5Cpsi+%27%27%28t%29%5Cvarphi+%27%28x%29+-+%5Cvarphi+%27%27%28x%29+%5Cpsi+%27%28t%29%7D%7B%5Cvarphi%5E3+%28t%29%7D+%5Ctag%7B2.24%7D+

3.2.5.1. 极坐标方程转化为参数方程形式

极坐标性质

equation?tex=%7B%5Cleft%5C%7B+%5Cbegin%7Baligned%7D+%5Crho%5E2+%26%3D+x%5E2+%2B+y%5E2%5C%5C+%5Ctan+%5Ctheta+%26%3D+%5Cfrac%7By%7D%7Bx%7D+%28x+%5Cne+0%29%5C%5C+%5Cend%7Baligned%7D%5Cright.%7D+%5Ctag%7B2.25%7D+

极坐标转化为直角坐标的转化公式

equation?tex=%7B%5Cleft%5C%7B+%5Cbegin%7Baligned%7D+x+%3D+%5Crho+%5Csin+%5Ctheta%5C%5C+y+%3D+%5Crho+%5Ccos+%5Ctheta%5C%5C+%5Cend%7Baligned%7D%5Cright.%7D+%5Ctag%7B2.26%7D+

已知经过点

equation?tex=M%28%5Crho_o%2C+%5Ctheta_0%29,且直线与极轴所成角为
equation?tex=%5Calpha的直线
equation?tex=l,其极坐标方程为

equation?tex=%5Crho+%5Csin+%28%5Calpha+-+%5Ctheta%29+%3D+%5Crho_0+%5Csin%28%5Calpha_0+-+%5Ctheta_0%29+%5C%5C

equation?tex=%5Crho+%3D+%5Crho_0+%5Csec%28%5Calpha_0+-+%5Ctheta_0%29+%5C%5C

转化为参数方程形式

equation?tex=%7B%5Cleft%5C%7B+%5Cbegin%7Baligned%7D+x+%3D+%5Crho_0+%5Csec%28%5Calpha_0+-+%5Ctheta_0%29+%5Csin%28%5Ctheta%29%5C%5C+y+%3D+%5Crho_0+%5Csec%28%5Calpha_0+-+%5Ctheta_0%29+%5Ccos%28%5Ctheta%29%5C%5C+%5Cend%7Baligned%7D+%5Cright.%7D+%5C%5C

3.2.6. 对数求导法

如果

equation?tex=y+%3D+y%28x%29的表达式由
多个因式的乘除、乘幂构成,或是 幂指函数的形式,则可先将函数去对数,然后两边对
equation?tex=x求导。

:对等式两边取对数,需要满足等式两边都大于0的条件


4. 高阶导数

4.1. 高阶导数的定义

含义:一般地,函数

equation?tex=y+%3D+f%28x%29
equation?tex=n阶导数为
equation?tex=y%5E%7B%28n%29%7D+%3D+%5Bf%5E%7B%28n+-+1%29%7D%28x%29%5D%27,也可记为
equation?tex=f%5E%7B%28n%29%7D%28x%29
equation?tex=%5Cdfrac%7Bd%5Eny%7D%7Bdx%5En%7D,即
equation?tex=n阶导数就是
equation?tex=n-1阶导函数的导数。

:如果函数在点

equation?tex=x
equation?tex=n阶可导,则在点
equation?tex=x的某邻域内
equation?tex=f%28x%29必定具有一切低于
equation?tex=n阶的导数。

4.2. 常用的高阶导数公式

equation?tex=%28%5Csin+x%29%5E%7B%28n%29%7D+%3D+%5Csin+%28x+%2B+n+%5Ccdot+%5Cfrac%7B%5Cpi%7D%7B2%7D%29+%5Ctag%7B2.27%7D+
equation?tex=%28cos+x%29%5E%7B%28n%29%7D+%3D+%5Ccos+%28x+%2B+n+%5Ccdot+%5Cfrac%7B%5Cpi%7D%7B2%7D%29+%5Ctag%7B2.28%7D+
equation?tex=%28u+%5Cpm+v%29%5E%7B%28n%29%7D+%3D+u%5E%7B%28n%29%7D+%5Cpm+v%5E%7B%28n%29%7D+%5Ctag%7B2.29%7D+
equation?tex=%28uv%29%5E%7B%28n%29%7D+%3D+%5Csum_%7Bk%3D0%7D%5En+C_n%5Ek+u%5E%7B%28k%29%7Dv%5E%7B%28n-k%29%7D+%5Ctag%7B2.30%7D+

式2.24可类比

equation?tex=n阶二项式公式

equation?tex=%28u+%2B+v%29%5E%7Bn%7D+%3D+%5Csum_%7Bk%3D0%7D%5En+C_n%5Ek+u%5E%7Bk%7Dv%5E%7Bn-k%7D+%5Ctag%7B2.31%7D+
  • 推论

equation?tex=y%3D+%5Csin%28ax+%2B+b%29,则

equation?tex=y%5E%7B%28n%29%7D+%3D+a%5En+%5Csin%28ax+%2B+b+%2B+n+%5Ccdot+%5Cfrac%7B%5Cpi%7D%7B2%7D%29+%5Ctag%7B2.32%7D+
  • 证明

通过归纳法,求

equation?tex=y%27
equation?tex=y%27%27,推出
equation?tex=y%5E%7B%28n%29%7D.

4.3. 求高阶导数的方法

  1. 公式法,带入高阶导数公式
  2. 归纳法,求
    equation?tex=y%27
    equation?tex=y%27%27,归纳
    equation?tex=y%5E%7B%28n%29%7D

5. 总结

  1. 导数
  • 定义
  • 求导法则
  • 高阶导数

2. 微分

    • 定义
    • 微分与可导的关系
    • 微分方程求导
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值