反函数求一阶导和二阶导的推导过程

由于未提供博客具体内容,无法生成包含关键信息的摘要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

### 舵机控制系统传递函数公式推导 舵机控制系统的传递函数通常用于描述输入信号与输出位置之间的关系。对于个典型的伺服系统,其动态行为可以用线性化模型表示。假设舵机内部存在电机驱动机构以及反馈回路,则整个系统的动力学特性可以通过以下方式建模。 #### 1. 动态方程的建立 舵机的核心部件是个直流电机,其运动遵循电磁定律牛顿第二定律。设 \( J \) 表示转动惯量,\( B \) 是粘滞摩擦系数,\( K_t \) \( K_e \) 分别代表转矩常数反电动势常数,而 \( R_a \) \( L_a \) 则分别对应电枢电阻电感。则可以写出如下状态空间方程: \[ J \frac{d^2\theta}{dt^2} + B \frac{d\theta}{dt} = T_m \] 其中 \( T_m = K_t i_a \),且电流满足电路方程: \[ L_a \frac{di_a}{dt} + R_a i_a = V_{in} - K_e \frac{d\theta}{dt} \] 这里 \( V_{in} \) 是施加到电机上的电压,\( i_a \) 是流过电枢绕组的电流,\( \theta \) 是角位移。 #### 2. Laplace变换后的传递函数形式 通过对上述微分方程取拉普拉斯变换并假定初始条件为零,可以获得代数表达式。经过整理后得出从输入电压 \( U(s) \) 到角度输出 \( \Theta(s) \) 的传递函数为: \[ G(s) = \frac{\Theta(s)}{U(s)} = \frac{K}{s(T_1 s + 1)(T_2 s + 1)} \] 此处, - 增益因子 \( K = \frac{K_t}{R_a J} \), - 时间常数 \( T_1 = \frac{L_a}{R_a}, T_2 = \frac{B}{K_t} \). 此公式适用于理想情况下的简单二阶近似模型[^1]。 #### 3. PWM信号作用下实际应用中的简化处理 在具体工程实践中,比如利用STM32系列MCU生成PWM波形来操控舵机时,往往不需要考虑如此复杂的物理过程。因为商用RC舵机已经内置了相应的PID调节器以及其他补偿机制,外部只需提供适当占空比变化即可完成精准定位操作][^[^24]。 然而如果要深入研究或者定制开发特殊用途高性能伺服单元的话,则可能需要用到更精确完整的数学描述方法来进行分析优化工作。 ```python import numpy as np from scipy import signal # 定义参数 K = 1 T1 = 0.5 T2 = 0.2 num = [K] den = [T1*T2, (T1+T2), 1] sys = signal.TransferFunction(num, den) print(sys) ``` 以上代码片段展示了如何借助Python库构建基本的般型连续时间SISO对象实例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铁蛋阳阳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值