目录
一、问题
疑问:在做微分方程的题时,发现自己总是分不清也记不住,何时用换元法做。主要的问题包括以下两个。
一是,缺y项的微分方程如何求解?换元时y''=dp/dx,还是y''=p·dp/dx?这属于高阶可降解方程的内容。
二是,一般微分方程的解都是y当作x的函数,而有时不可解得。那么什么时候将x看作y的函数呢?这属于反函数高阶导数的内容。
二、高阶可降阶微分方程
1. 概念理解
高阶:二阶及二阶以上的微分方程。
可降阶:与之对应的是不可降阶类型,在此列出三种可降阶类型。
2. 解法
①
y的n阶导 = x的函数类型。接连积分n次,便得到含有n个任意常数的通解。
②
等式中不显含(缺少)y ,所以后续也不要引入y才更方便,设 y'=p,y''=dp/dx=p'。
③