【高数】高阶可降阶微分方程的解法?什么时候考虑把dx/dy换元(反函数高阶导数)?

本文探讨了在解决微分方程时何时使用换元法,特别是针对高阶可降阶微分方程和反函数高阶导数的情况。介绍了三种可降阶类型的高阶微分方程解法,并通过例题说明如何在缺失y或x的情况下选择合适的转换。同时,阐述了一阶和二阶反函数导数的概念及其在解题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、问题

二、高阶可降阶微分方程

三、反函数高阶导数

四、小结


一、问题

疑问:在做微分方程的题时,发现自己总是分不清也记不住,何时用换元法做。主要的问题包括以下两个。

一是,缺y项的微分方程如何求解?换元时y''=dp/dx,还是y''=p·dp/dx?这属于高阶可降解方程的内容。

二是,一般微分方程的解都是y当作x的函数,而有时不可解得。那么什么时候将x看作y的函数呢?这属于反函数高阶导数的内容。

二、高阶可降阶微分方程

1. 概念理解

高阶:二阶及二阶以上的微分方程。

可降阶:与之对应的是不可降阶类型,在此列出三种可降阶类型。

2. 解法

① y^{(n)}=f(x)

y的n阶导 = x的函数类型。接连积分n次,便得到含有n个任意常数的通解

② y''=f(x,y')

等式中不显含(缺少)y ,所以后续也不要引入y才更方便,设 y'=p,y''=dp/dx=p'。

③ 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值