我们不妨先来思考下面几道数学应用题:
(1)已知某款零件每盒 50 个,5 盒共多少个零件?
50×5=250
(2)一件商品原价 100 元,经过三次提价后的价格为 133.1 元。假设每次提价率相同,求每次提价的百分率。
。
(3)已知某车间工人每小时生产 360 个零件,则 3 小时该车间生产了多少个零件?
360×3=1080
(4)已知某厂房工人在任意时刻的生产效率不是固定不变的,假设第
小时生产的产品数量为
,那么从第 2 小时至第 4.5 小时,该厂房生产出来的产品总量是多少?
——什么鬼???
通过对比上述几个问题所涉及的数量关系,我们不难发现,现行中学阶段的数学多属于初等数学——它只能分析和处理不变的、匀速的与均匀的事物。只要我们涉及到不均匀变化过程中的瞬时变化率与不均匀变化过程中的总累积(几何意义就是曲线在某一点处的斜率,以及曲线在某一区间内与曲边图形围成的有向面积[1]),如果只利用有限步的加减乘除、开方、对数等初等运算的话,显然是无法直接表示出来的。而函数就是描述因变量随自变量变化的数学概念。为了让这类问题的求解思路形式化、套路化,一个很自然的想法就是对函数定义导数和积分,而它们又可以被定义为两类特殊的极限。于是,以极限为基础,以微分、导数、积分、级数为核心的高等数学的基础框架就这样形成了。它是系统性求解变量问题与带有无限过程的问题之必备运算工具。微积分与微分方程是高等数学的两大基本框架。
不断变化、不均匀、不规则在物理现象中普遍存在,不变的、规则的、均匀的才是特例。从这个意义上,中学阶段根本无法正式地引入物理学的基本构架。譬如,要想求非匀速过程中的瞬时速度,必需利用位移对时间的导数,或者是加速度对时间的积分。
然而,许多情况下,直接利用微分式或者是积分式表示具体的物理量往往比较困难,但是直接列出含有待解函数的微分或导数的等式——微分方程加以描述却比较直接。尤其是对于需要利用带有一阶项[2]的二阶的微分方程描述的物理模型,从解析解的形式中也很难看出各个部分的物理意义。最经典的案例,如扩散方程、热传导方程、弦振动方程、波动方程等等。
—————————
[1]有向面积是指当曲边梯形位于 x 轴上方时,面积取正;位于 x 轴下方时,面积取负。
[2]微分方程的阶数被定义为方程中含有未知函数的最高阶项的阶数。根据微分方程阶数的定义,带有一阶项的二阶微分方程显然是指这个微分方程既含有关于未知函数的一阶导 y',也含有关于未知函数的二阶导 y''。这类似于我们在中学遇到的带有一次项的一元二次多项式方程既含有关于未知数的一次幂 x,也含有关于未知数的二次幂 x²。