点云的无序性_深度学习|点云分类:RS-CNN

本文是我在《泡泡机器人》上翻译的一篇文章,放在这里做个备份。

原文链接:RS-CNN:基于几何关系的点云分析卷积网络

一、前言

由于点云的无序性,点云分析一直是一个比较有挑战性的问题。在本篇文章中,我们提出了RS-CNN方法,即基于几何关系的卷积网络,它把原来基于有序信息的卷积网络扩展到可以适应无序信息。实现这一方法的关键因素在于从点云中提取出拓扑约束关系,进一步,卷积网络的权重在学习中也被拓扑关系约束,这样,我们就可以得到一个鲁棒的卷积网络。并且,基于这样的卷积网络,我们可以改进已有的点云识别系统,在数据集上的结果表明,它能够取得state-of-the-art的效果。

二、主要算法

1、主要思想

对于一般的点云处理任务,主要会面临以下挑战:

1)点云是无序的,因此要求学习的表示是置换不变的。

2)点云分布在3D几何空间中,因此要求学习的表示形式对刚性变换(例如旋转和平移)具有鲁棒性。

3)点云构成一个基本形状,因此,学习到的表示应具有判别性形状意识。

针对以上问题,本文提出了相应的解决办法,主要贡献如下:

1)提出了一种新型的从关系中学习的卷积算子关系形状卷积。它可以显式地对点的几何关系进行编码,从而在很大程度上提高了对形状的感知能力和鲁棒性。即RS-Conv。

2)提出一个具有关系形状卷积的深层层次结构,即,RS-CNN。将规则网格CNN扩展到不规则配置,实现点云的上下文形状感知学习。即基于RS-Conv设计的RS-CNN。

3)在三个任务中对具有挑战性的基准进行广泛的实验,以及深入的经验和理论分析,证明RS-CNN达到了SOTA的水平。

2、卷积模型(RS-Conv)

本文所提出的卷积方法的结构如下图所示:

4be386c9b2e105a472de13fa364c6b2f.png

大致可以分为以下几步:

1)首先通过FPS进行采样,得到质心;

2)在球形领域寻找近邻;

3)对于每个邻居点,计算low-level信息;

4)使用MLP将low-level信息映射成高维信息;

5)max操作,聚合所有近邻的信息作为质心的新特征。

3、卷积网络(RS-CNN)

RS-CNN用于分类和分割网络的方式如下图所示:

f3daa07be63a85ec19d68ce4b60d39a4.png

在这两个任务中,RS-CNN用于学习一组层次的Shapeaware表示。配置最终的全局表示形式,后跟三个完全连接的(FC)层,以进行分类。对于分割,通过特征传播对学习的多级表示进行连续上采样以生成每点预测。两者都可以端到端的方式进行训练。

三、实验

作者把该方法在ShapeNet数据集上和其他方法做了对比,结果如下表所示,从数据上看,在绝大部分形状上,本方法都取得了最好的效果。

6e175fe7d5742bd9988ecc6d348c2a00.png

下面给出一些本方法做分割的演示结果:

e937d25ded15a66efae41d782c7e005c.png
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值