漫步数学分析二十二——魏尔斯特拉斯测试

本文介绍了函数序列和级数的一致收敛性判别方法,包括柯西判别准则及魏尔斯特拉斯M测试,并通过具体例子说明了这些方法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们现在考虑一致收敛的一些判别方法。首先是理论上的方法,类似于 Rn 中序列的柯西判别准则,它也称为柯西判别准则。

2 fk:ARm 是一个函数序列,那么 fk 一致收敛,当且仅当对每个 ε>0 ,存在一个 N 使得l,kN时,对所有的 xA ,不等式 fk(x)fl(x)<ε

对于级数的情况,柯西判别准则形式如下:级数 Σk=1gk 一致收敛,当且仅当对每个 ε>0 ,存在一个 N 使得kN时,对所有的 xA 与整数 p=0,1,2, ,不等式 gk(x)++gk+p(x)<ε 成立。

根据上面的定理,我们可以得到下面用于判断级数一致收敛的方法,叫做魏尔斯特拉斯M测试(Weierstrass M-test)。

3 假设 gk:ARm 这样的函数,存在常数 Mk 使得对所有的 xA,gk(x)Mk ,并且 Σk=1Mk 收敛。那么 Σk=1gk 一致收敛(并且绝对收敛)。

M 测试并不适用于所有情况,但是对大多数情况都是有效的。对于更加精炼的测试,可以参看狄利克雷(Dirichlet)和阿贝尔(Abel)测试(会在后面给出)。

定理3事实上非常直观,因为常数Mk给出了收敛速率的边界,成为边界的点要独立于 x 。(更准确来说,级数Σgk的尾部(也就是误差)由 ΣMk 的尾部界定,它 0 且与 x 无关。)

1说明

1gn(x)=1(sinnx)2n2

一致收敛。

Mn=1/n2 ,这里 |gn(x)|Mn ,因为 |sinnx|1 。因此由定理3可知收敛是一致的。

2 证明

f(x)=0(xnn!)2

R 上是连续的。

这里我们无法对每一项选出一个 Mn ,因为 xn 是无界的,因此我们不能期望它在 R 上所有地方都是一致收敛的,但是我们可以证明它在每个区间[a,a]上一致收敛,这是我们令 Mn=(an/n!)2 ,它是 [a,a] 上第 n 项的上界,比值测试说明ΣMn收敛,因为

Mn+1Mn=(n!(n+1)!)2(an+1an)=(an+1)2

收敛到零,也就是比1小。因此我们可以得出 [a,a] 上一致收敛并且根据定理1,我们可知 f [a,a]上是连续的。因为 a 是任意的,所以我们得出其在R的所有地方都是连续的。

3 假设序列 fn(x),0x1 一致收敛并且 fn 是可微的, fn(x) 一致收敛吗?

答案是否。通常来说,导数通过均值定理控制函数,但反过来不成立。例如令 fn(x)=[sin(n2x)]/n ,那么 fn0 (一致),但是 fn(x)=ncos(n2x) 不收敛,甚至也不是逐点收敛的(例如,令 x=0 )。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值