我们现在考虑一致收敛的一些判别方法。首先是理论上的方法,类似于 Rn 中序列的柯西判别准则,它也称为柯西判别准则。
定理2
令
fk:A→Rm
是一个函数序列,那么
fk
一致收敛,当且仅当对每个
ε>0
,存在一个
N
使得
对于级数的情况,柯西判别准则形式如下:级数
Σ∞k=1gk
一致收敛,当且仅当对每个
ε>0
,存在一个
N
使得
根据上面的定理,我们可以得到下面用于判断级数一致收敛的方法,叫做魏尔斯特拉斯M测试(Weierstrass M-test)。
定理3 假设 gk:A→Rm 这样的函数,存在常数 Mk 使得对所有的 x∈A,∥gk(x)∥≤Mk ,并且 Σ∞k=1Mk 收敛。那么 Σ∞k=1gk 一致收敛(并且绝对收敛)。
M 测试并不适用于所有情况,但是对大多数情况都是有效的。对于更加精炼的测试,可以参看狄利克雷(Dirichlet)和阿贝尔(Abel)测试(会在后面给出)。
定理3事实上非常直观,因为常数
一致收敛。
解: 令 Mn=1/n2 ,这里 |gn(x)|≤Mn ,因为 |sinnx|≤1 。因此由定理3可知收敛是一致的。
例2:
证明
在 R 上是连续的。
收敛到零,也就是比1小。因此我们可以得出
[−a,a]
上一致收敛并且根据定理1,我们可知
f
在
例3: 假设序列 fn(x),0≤x≤1 一致收敛并且 fn 是可微的, f′n(x) 一致收敛吗?
解: 答案是否。通常来说,导数通过均值定理控制函数,但反过来不成立。例如令 fn(x)=[sin(n2x)]/n ,那么 fn→0 (一致),但是 f′n(x)=ncos(n2x) 不收敛,甚至也不是逐点收敛的(例如,令 x=0 )。