实对称矩阵的特征值求法_浅谈矩阵的相似对角化(二)

a82535fb7cfcfd48ffcf1a8c7defeb2e.png
森屿瑾年:浅谈线性变换和矩阵之间的关系​zhuanlan.zhihu.com
368499f57fc881a4c3f8e37b0e0a6285.png
森屿瑾年:浅谈矩阵的相似对角化(一)​zhuanlan.zhihu.com
584e963e287efedc354f2cc80395ccc3.png

在上一篇文章我们证明了任意一个n阶矩阵可以相似对角化的充要条件是这个n阶矩阵有n个线性无关的特征向量,在本篇文章中我们一起讨论实对称矩阵的性质以及二次型的标准化。

我们先讨论实对称矩阵的一些特殊的性质:

,
,
,即矩阵
是实数域
上的一个n阶实对称矩阵,设复数
为实对称矩阵
的特征值,复向量
为对应的特征向量,

,

由于

是实对称矩阵,所以
,故

于是有

综上有

移向得

因为

,所以
,

所以

,即
,所以实对称矩阵
的特征值均为实数。

所以我们得到性质1:实对称矩阵的特征值均为实数。

是实对称矩阵
的两个特征值,
是对应的特征向量,则有


于是

因为

,故
,即
正交。

所以我们得到性质2:实对称矩阵不同特征值对应的特征向量是正交的。

这条性质尤为重要,正是根据这条性质我们才能证明出实对称矩阵最重要的一条性质,即实对称矩阵一定可以用正交矩阵进行正交相似对角化。

在上一篇文章中,我们知道任意一个n阶矩阵可以相似对角化的充要条件是这个n阶矩阵有n个线性无关的特征向量,在本篇文章,我们的主角是实对称矩阵,那么实对称矩阵怎样才可以相似对角化呢?

答案是任意一个实对称矩阵都可以相似对角化,即等价于任意一个n阶的实对称矩阵一定有n个线性无关的特征向量,这个结论的证明较为复杂,在这里我们姑且当做结论记住,等笔者学过这部分的内容后再补充在这里。并且实对称矩阵还十分的特殊,不仅任意一个实对称矩阵可以用正交矩阵进行正交相似对角化,证明如下:

证明:由于实对称矩阵一定有n个线性无关的特征向量,不妨设n阶实对称矩阵

的n个线性无关的特征向量为
,则有

由于

线性无关,

由于同一个特征值

可以对应无穷多个特征向量,特征值
对应的线性无关的特征向量为
,可以用施密特正交化将其化成标准正交基
,在
中任意两个向量之间均是正交的,并且每个向量的模长均为1,同理可以将特征值
对应的特征向量
化成标准正交基
,由于
是实对称矩阵,由性质2知
也是一组标准正交基,于是我们可以通过反复使用施密特正交化的方法将特征值
对应的特征向量
化成一个正交矩阵

因此有

即实对称矩阵

可以用正交矩阵进行相似对角化,因为正交矩阵的逆等于正交矩阵的转置,故有

正是由于性质2的成立,即实对称矩阵不同特征值对应的特征向量是正交的,所以才能够通过施密特正交化构造出正交矩阵,使得实对称矩阵正交相似与对角矩阵。

因此我们得到性质3:实对称矩阵一定可以相似对角化,并且相似的对角矩阵为该实对称矩阵线性无关的特征向量对应的特征值按顺序排列在对角矩阵的对角线上,并且实对称矩阵还可以通过施密特正交化构造正交矩阵进行正交相似对角化。

注:实对称可以用正交矩阵进行正交相似对角化,当然也可以用普通的矩阵进行相似对角化,具体问题应当具体分析。

实对称矩阵的正交相似对角化正是我们将二次型化成标准型的理论基础,下面让我们来引出二次型标准化的相关问题

所谓二次型,实际上指的是某一数域

上的n元齐次多项式,任意一个n元二次型
可以用这样的矩阵与向量的乘积表示,即

,
,其中

于是

,其中
是一个实对称矩阵,若是采用这样的形式表达式表示一个二次型,则每一个二次型与一个实对称矩阵是一一对应的。

对于任意一个二次型,我们认为只含平方项的二次型的形式最为简洁,因此我们希望通过线性换元,使得原来的二次型化为只含有平方项的二次型,令

, (
为n阶可逆矩阵)带入原来的二次型的表达式

,则

故二次型做线性替换后仍然是二次型。

并且满足关系式

,称矩阵
与矩阵
为合同关系。

回到刚才的问题,我们希望所做的线性替换

使得矩阵
为对角矩阵,这个问题等价于实对称矩阵的正交相似对角化问题,因为任意一个实对称矩阵一定可以进行正交相似对角化,故我们总可以找到这样的矩阵
,使得
为对角矩阵。

对于任意一个二次型

,我们给出将其化成标准型的一般方法:

(1)写出二次型对应的实对称矩阵

;

(2)求出二次型矩阵

的特征值
;

(3)将这些特征值反带回特征多项式

,求出二次型矩阵
的n个线性无关的特征向量
;

(4)将同一特征值对应的线性无关的特征向量进行施密特正交标准化,于是得到n个两两相互正交的单位向量

,将这n个两两正交的单位向量按照原来的顺序拼成一个正交矩阵
,于是有

由于

是正交矩阵,所以

即我们要寻找的矩阵

即为正交矩阵

知,
,便可写出所做的线性变换。

注:将二次型化成标准型之后的平方项的系数就是对角矩阵的对角线上的元素,也就是矩阵

的特征值。

在下篇文章中将继续介绍关于二次型理论部分的一些内容

未完待续...

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值