复合函数求导定义证明_求导法则

(建议阅读原文)

预备知识 基本初等函数的导数结论
   如果需要求导的函数可以看做若干个已知导函数的函数(如基本初等函数)经过四则运算或复合得到的, 那么我们可以直接使用一系列求导法则对其求导 四则运算

复合函数

详细见 “一元复合函数求导(链式法则)” 线性
   对求导而言, 线性是指若干 函数线性组合(即把若干个函数分别乘以常数再相加)的求导等于对这些函数先分别求导再进行同样的线性组合. 由于函数加减法属于函数线性组合的两种简单情况, 这里只需要证明求导运算是线性的, 即求导是一种 线性运算 即可. 令若干常数为
, 若干可导函数为
, 根据导数的定义, 这些函数线性组合的导数为
例1 对函数
求导

   这里的
可以看做三角函数
函数和幂函数
的线性组合, 二者都是基本初等函数, 导数分别为
, 由于求导是线性运算, 我们只需要对两个函数各自的导函数进行同样的线性组合即可
两函数相乘的导数
   令两函数分别为
, 现在求
的导函数. 由导数的定义式 2 得

从几何上来看, 我们可以把
看做一个矩形的面积 (未完成)。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
假设 $f(x)$ 和 $g(x)$ 都是可导的函数,$y=f(u)$,其中 $u=g(x)$,则 $y$ 是 $x$ 的复合函数。我们要求解 $y$ 对 $x$ 的导数 $\frac{dy}{dx}$。 根据链式法则,$\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$。 现在我们来分别求解 $\frac{dy}{du}$ 和 $\frac{du}{dx}$。 1. 求解 $\frac{dy}{du}$ 根据导数定义,$\frac{dy}{du}=\lim_{\Delta u\to0}\frac{\Delta y}{\Delta u}$。 当 $\Delta u\to0$ 时,$\Delta y=f(u+\Delta u)-f(u)$。 将 $u+\Delta u$ 代入 $y=f(u)$,得到 $y=f(u+\Delta u)$。 因此,$\Delta y=f(u+\Delta u)-f(u)=y(u+\Delta u)-y(u)$。 将 $\Delta y$ 代入导数定义中,得到: $$ \frac{dy}{du}=\lim_{\Delta u\to0}\frac{y(u+\Delta u)-y(u)}{\Delta u} $$ 2. 求解 $\frac{du}{dx}$ 同理,$\frac{du}{dx}=\lim_{\Delta x\to0}\frac{\Delta u}{\Delta x}$。 当 $\Delta x\to0$ 时,$\Delta u=g(x+\Delta x)-g(x)$。 将 $\Delta u$ 代入 $u=g(x)$,得到 $u=g(x+\Delta x)$。 因此,$\Delta u=g(x+\Delta x)-g(x)=u(x+\Delta x)-u(x)$。 将 $\Delta u$ 代入导数定义中,得到: $$ \frac{du}{dx}=\lim_{\Delta x\to0}\frac{u(x+\Delta x)-u(x)}{\Delta x} $$ 3. 求解 $\frac{dy}{dx}$ 将 $\frac{dy}{du}$ 和 $\frac{du}{dx}$ 代入 $\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$,得到: $$ \frac{dy}{dx}=\lim_{\Delta x\to0}\frac{y(u+\Delta u)-y(u)}{\Delta u}\cdot\lim_{\Delta x\to0}\frac{u(x+\Delta x)-u(x)}{\Delta x} $$ 因为 $u=g(x)$,所以: $$ \lim_{\Delta x\to0}\frac{u(x+\Delta x)-u(x)}{\Delta x}=\lim_{\Delta x\to0}\frac{g(x+\Delta x)-g(x)}{\Delta x}=\frac{du}{dx} $$ 因此,上式可以简化为: $$ \frac{dy}{dx}=\lim_{\Delta u\to0}\frac{y(u+\Delta u)-y(u)}{\Delta u}\cdot\frac{du}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} $$ 这就是复合函数求导法则的推导过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值