rrt运动规划算法流程图_自动驾驶实时路径规划算法简介(Local search局部搜索)...

本文介绍了自动驾驶中的实时路径规划问题,重点解析了RRT运动规划算法的流程,并探讨了自动驾驶环境中的相关术语和定义。内容涵盖自动驾驶性能评估、驾驶员体验以及ADAS系统对车辆运动特性的影响。
摘要由CSDN通过智能技术生成
在上一节自动驾驶实时路径规划算法简介(RRT 和Lattice Planner)中介绍了  找到车辆要遵循的最佳几何路径有两个方法: a) 通过增量采样或离散几何结构(即增量搜索)找到最佳的动作序列。 b) 从多个最终状态中找到最佳操作(即局部搜索)。 增量搜索我们在上一节(点击阅读自动驾驶实时路径规划算法简介(RRT 和Lattice Planner))介绍了。 接下来我们分享: 局部搜索 实时搜索整个图(什么是实时搜索点击 自动驾驶实时路径规划算法简介(RRT 和Lattice Planner) )并不总是有效的;因此,一些方法使用有限的视界,无论是在时间还是空间上。 在局部搜索级别,用于道路自动驾驶的最流行的技术可能是搜索空间包含某个几何曲线(例如回旋曲线或样条曲线)以及该曲线的几个横向位移。然后通过一个代价函数对每个候选路径进行评估,考虑到距离和时间成本、加速和碰撞检查。 横向位移产生的路径一般可分为两类: (i)车辆作用空间的横向移动 (ii)车辆状态空间中的横向位移 下图展示出了相对比较: 6994089d94f72f4c6f8293735f9d3d03.png 在复杂的动态环境中,横向移动的轨迹可能无法很好地执行(Gu和Dolan,2012)。因为他不是朝着目标搜索整个状态空间,这样会在无限时间范围内需要大量的计算能力(用于构建状态空间)。 Benenson等人提出的部分运动规划(Partial Motion Planning-PMP) 可以使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值