在数学的知识体系中,有一个无理数和圆周率π一样有着非常大的意义和价值,但却没有享受到同等的待遇,学生们普遍知道π的近似值和意义,却只有少部分知道它,它就是e。当然,不光是学生,有些中学或大学的数学老师对e的引入和自然对数的教学基本上是一本糊涂账,没办法讲透彻,造成学生学完也是一头雾水,也许这种差别对待的情况只是出现在中国,毕竟我们对圆周率π有特殊些情结和优越感。
对e的概念不清晰还有一个客观的事实,e的出现是直到高中讲到对数才真正出现的,主要是说两个重要对数,一个是常用对数以10为底(lgx),一个是自然对数以e为底(lnx),而我们要真正揭开e的面纱要等到大学高等数学学习微积分的时候,而大学数学给学生们的印象似乎比不上中学阶段(原因可能有一万种)。
对e的概念之所以模糊,我想跟我们对它出现的背景不了解有很大关系。毕竟我们中国人一说到π就会联系到刘徽和祖冲之一样,我想这就是我们数学学习情感态度价值观渗透的成果;在《HPM:数学史与数学教育》中谈到e是伴随着计算复利而出现的,最早发现于古巴比伦,然后慢慢应用于其它领域。
最能说明e和π有着同样魅力的公式,还要数被称为最美公式的欧拉公式。因为这个公式足够精简,没有多余的字符,却联系着几乎所有的数学知识。之所以说它最美,原因有六个:1)自然数的“e”含于其中。 自然对数的底,大到飞船的速度,小至蜗牛的螺线,都离离开它;2)最重要的常数 π 含于其中,因为世界上最完美的平面对称图形非圆莫属,圆与圆周率共生;3)最重要的运算符号 + 含于其中。 之所以说加号是最重要的符号,是因为其余符号都是由加号派生而来。减号是加法的逆逆运算,乘法是累计的加法……;4)最重要的关系符号 = 含于其中。 从你一开始学算术,最先遇见它,相信你也会同意这句话;5)最重要的两个元在里面。零元0 ,单位1 ,是构造群、环、域的基本元素。如果你看了有关《近世代数》的书,你就会体会到它的重要性;6)最重要的虚单位 i 也在其中。 虚数单位 i 使数轴上的问题扩展到了平面,而在哈密尔的 4 元数与 凯莱的 8 元数中也离开不了它。
既然e这么重要,让我们一起记住它吧!
e=2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919320