机器学习中常见的损失函数

目录

1 损失函数简介 

2 log对数损失函数(逻辑回归) 

3 平方损失函数(最小二乘法, Ordinary Least Squares )

4 指数损失函数(Adaboost)

5 Hinge损失函数(SVM)

6 0-1损失函数

7 绝对值损失函数


1 损失函数简介 

      损失函数是用来估量模型的预测值f(x)真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。损失函数分为经验风险损失函数结构风险损失函数经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。通常可以表示成如下式子:

                 

        其中,前面的均值函数表示的是经验风险函数,L代表的是损失函数,后面的Φ是正则化项或者叫惩罚项,它可以是L1,也可以是L2,或者其他的正则函数。整个式子表示的意思是找到使目标函数最小时的θ值。下面主要列出几种常见的损失函数:

  • log对数损失函数(逻辑回归)
  • 平方损失函数(最小二乘法)
  • 指数损失函数(Adaboost)
  • Hinge损失函数(SVM)
  • 0-1损失
  • 绝对值损失

2 log对数损失函数(逻辑回归) 

        Logistic回归损失函数就是对数损失函数,在Logistic回归的推导中,它假设样本服从伯努利分布(伯努利分布亦称“零一分布”、“两点分布”。称随机变量X有伯努利分布, 参数为p(0<p<1),如果它分别以概率p1-p取1和0为值。EX= p,DX=p(1-p)分布,然后求得满足该分布的似然函数,接着用对数求极值Logistic回归并没有求对数似然函数的最大值,而是把极大化当做一个思想,进而推导它的风险函数为最小化的负的似然函数。从损失函数的角度上,它就成为了log损失函数,其标准形式: 

        

Logistic回归目标式子如下:

       

逻辑回归模型详见:https://blog.csdn.net/weixin_39910711/article/details/81607386

平方损失函数(最小二乘法, Ordinary Least Squares )

        最小二乘法线性回归的一种方法,它将回归的问题转化为了凸优化的问题。最小二乘法的基本原则是:最优拟合曲线应该使得所有点到回归直线的距离和最小。通常用欧式距离进行距离的度量。当样本个数为n时,此时的损失函数变为:

        

        Y-f(X)表示的是残差,整个式子表示的是残差的平方和,而我们的目的就是最小化这个目标函数值(注:该式子未加入正则项),也就是最小化残差的平方和。

        而在实际应用中,通常会使用均方差(MSE)作为一项衡量指标,公式如下:

        

指数损失函数(Adaboost)

        学过Adaboost算法的人都知道,它是前向分步加法算法的特例,是一个加和模型,损失函数就是指数函数。在Adaboost中,经过m此迭代之后,可以得到:

                

        Adaboost每次迭代时的目的是为了找到最小化下列式子时的参数 αG

             

        指数损失函数(exp-loss)的标准形式如下:

              

               

        可以看出,Adaboost的目标式子就是指数损失,在给定n个样本的情况下,Adaboost的损失函数为:

               

Hinge损失函数(SVM)

        Hinge loss用于最大间隔(maximum-margin)分类,其中最有代表性的就是支持向量机SVM。

        Hinge函数的标准形式:

                

        其中,t为目标值(-1或+1),y是分类器输出的预测值,并不直接是类标签。其含义为,当t和y的符号相同时(表示y预测正确)并且|y|≥1时,hinge loss为0;当t和y的符号相反时,hinge loss随着y的增大线性增大。

    说法(1)   在机器学习算法中,hinge损失函数SVM是息息相关的。在线性支持向量机中,最优化问题可以等价于下列式子:

                 

       下面来对式子做个变形,令:

        于是,原式就变成了:

        式子就可以表示成:     

                 $$\min_{w,b}  \frac{1}{C}\left ( \frac{1}{2}\ ||w||^2 $$ + C \sum_{i}^{N} \xi_i\right )$$

            可以看出,该式子与下式非常相似:
                  $$\frac{1}{m} \sum_{i=1}^{m} l(w \cdot  x_i + b, y_i) + ||w||^2$$

       其中就是hinge损失函数,后面相当于L2正则项。 

       说法(2)在支持向量机中,最初的SVM优化的函数如下:

                 

     将约束项进行变形,则为:

                   

  则损失函数可以进一步写为:

               

        因此,SVM的损失函数可以看做是L2正则化Hinge loss之和。

SVM详见:https://blog.csdn.net/weixin_39910711/article/details/82356973

0-1损失函数

        在分类问题中,可以使用函数的正负号来进行模式判断,函数值本身的大小并不是很重要,0-1损失函数比较的是预测值真实值的符号是否相同,0-1损失的具体形式如下:

                

        感知机就是用的这种损失函数。但是由于相等这个条件太过严格,因此我们可以放宽条件,即满足时认为相等。

                   

绝对值损失函数

        绝对损失函数的意义和平方损失函数差不多,只不过是取了绝对值而不是求平方,差距不会被平方放大,其形式为:

                

 

 

 

 

 

 

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值