群同态基本定理证明_算术基本定理和无理数的证明

北师大版八上数学「实数」章,在「认识无理数」一节,课本提供了一个课后阅读材料,证明是无理数。如图:

3682a86567ea341d9930148166f01c99.png
证明思路

这个证明包含了一个重要的代数推理方法——反证法,同时利用到偶数的知识,例如,偶数的平方数是偶数,奇数的平方数是奇数;用代数式表示偶数的方法。学生需要仔细研读这份阅读材料,并能再现证明过程,掌握其中的知识和证明方法。

不过,这个证明方法针对具体的数字,利用偶数的性质,具有一定的局限性。它不能很好的回答,对任意数字开方,如何证明其是否为无理数(例如, 分别是无理数吗?)。此时,利用「算术基本定理」来证明,思路会更加简洁、清晰、一致,也更能抓住2的本质特征——2是一个质数

算术基本定理

我们知道,在自然数中,最基本、最重要的一类数是质数。质数之所以重要,是因为除了质数以外,其余的数(排除0和1)都能分解成质数乘积的形式(例如15=3×5,100=2×2×5×5)。质数如同数字世界的基本元素,通过质数相乘,就可以得到任意合数。

算术基本定理,是在合数分解的基础上,进一步的指出:如果不考虑质数乘积的顺序,那么这样的分解只能有唯一的形式。即:

每一个比1大的整数只能有一种方式分解成质数的乘积。(这个结论看似显而易见,但绝不是不证自明的。事实上,这个结论需要细致的推理,限于篇幅,此处省略。)

例如:520只有唯一的质因数分解形式「」。此处的「唯一」意味着「有哪些质数」及「每一个质数的数量」都是确定的。

所以,「算术基本定理」也叫做「唯一分解定理」。

从算术基本定理的角度理解是无理数

我们还是从反证法出发,假设是有理数,则

此处用到了有理数的代数形式为两个整数的比。从这个角度来说,有理数就是"可比数",无理数就是“无比数”

将(1)式左右平方,去分母变形得到:

(2)式告诉我们,有一个数既能表示成的形式,也能表示成的形式。根据算术基本定理,我们还能知道,虽然有两种表达形式,但从质数分解的角度,只能有唯一的形式。

观察(2)式左右两边的数可知,有奇数个质数相乘得到,有偶数个质数相乘得到。

因为,数是,设有个质数相乘得到,那么有个质数相乘得到,一共有个质数相乘得到(系数2也是一个质因数)。

这表明,研究代数的过程中,我们往往喜欢在彼此等价的不同表达式之间来回变换。不同的形式往往暗含着不同的数学信息。

根据算术基本定理,数只能有唯一的分解形式,但是,现在(2)式两边分解的质数个数都不相同,这与算术基本定理矛盾。所以原假设错误,即是无理数。

算术基本定理在无理数证明中的推广应用

上面证明的核心思路是利用反证法,根据左右两边数分解后的质因数个数的不等,与算术基本定理矛盾,从而得证。

我们注意到根号下的被开方数2是一个质数。(这样在因数分解时,也算作一个因数,从而导致左右两边质因数个数不同)

由此,可以进一步的推广为:

任何质数的开方,都是无理数;

进一步的,可以证明任意大于1的整数的开方数是否是无理数。

我们考虑一个合数,如果是平方数,则的开方自然是有理数;

如果是非平方数,假设,且、互质,(若,就变成平方数了。、互质是因为任何分数都可以化简成最简形式),左右平方后得到:

此时,因为,互质,所以和分解成的质因数不同,则二者相除的结果不可能是整数。(也就是:一个最简分数,分子、分母同时n次方后,仍然是最简分数。)

所以,更一般的结论是:

对非次方数开次方,结果是无理数。

例如,因为,即27是立方数,所以是有理数;49不是立方数,所以是无理数。

fe97bd37289c6082f9c1b5b50f7f4078.png
在这里,陪伴一个普通老师涓滴成长。欢迎扫码关注,点击“在看”
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值