可微偏导数一定存在_数学分析笔记 pg2 part1 p4 ch1ch4 导数 ch58 微分及其运算、隐函数与参数方程函数求导...

pg2 part1 p4 ch1-ch4 导数

概念与定义

函数导数 -

设 f(x) 在 x0 附近有定义,若极限 f'(x) = lim Δx→0 (f(x0 + Δx) - f(x0)) / Δx 存在,则称此极限为 f(x) 在 x0 处导数。也称 f(x) 在 x0 处可导

左右导数 -

Δx → +0;Δx → -0 时上述极限

区间可导 -

∀ x0 ∈ (a, b),∃ f'(x0)

闭区间可导 -

f(x) 在 (a, b) 可导,且在左右端点分别存在右左导数,则称 f(x) 在 [a, b] 可导

不可导函数 -

x0 处左右导数至少有一个不存在,或左右导数不相等,如

|x| 在 x = 0

x^(2/3) 在 x = 0  (左边为 -∞ 右边为 +∞)

高阶导数 -

若 (f'(x))' 存在,则其为 f(x) 的二阶导数,记为 y''、f''(x)、d^2y / dx^2。进而 n 阶导数记为 y^(n)、f^(n)(x)、d^ny / dx^n

性质与定理

(c)' = 0

(x^α)' = αx^(α - 1)

(a^x)' = a^xlna

(e^x)' = e^x

(log a x)' = 1 / xlna

(ln x)' = 1 / x

(sin x)' = cos x

(cos x)' = -sin x

(tan x)' = sec^2 x

(cot x)' = csc^2 x

(sec x)' = tan xsec x

(csc x)' = -cot xcsc x

(arcsin x)' = 1 / (1 - x^2)^0.5

(arccos x)' = -1 / (1 - x^2)^0.5

(arctan x)' = 1 / (1 + x^2)

(arccot x)' = -1 / (1 + x^2)

(sh x)' = ch x

(ch x) = sh x

(th x)' = 1 / ch^2 x

(coth x)' = -1 / sh^2 x

复合函数求导法:设 y = f(u),u = g(x),若 ∃ f‘(u),g'(x),则 ∃ y' = (f(g(x)))',且 dy/dx = dy/du * du/dx = f'(g(x)) * g'(x)

证明:

∵ y = f(u) 在 u 处可导

∴ lim u→0 Δy/Δu = f'(u)

即 Δy/Δu = f'(u) + α  ①,其中

lim Δu→0 α = 0  ②

当 Δu ≠ 0 时,①式两边同乘 Δu,得:

Δy = f'(u)Δu + αΔu  ③

当 Δu = 0 时,Δy = f(u + Δu) - f(u) = 0,③式也成立

将③式两边同除Δx,并令 Δx → 0 得:

dy/dx = lim Δx→0 Δy/Δx

= lim Δx→0 (f'(u) * Δu/Δx - α * Δu/Δx)

= lim Δx→0 f'(u)Δu/Δx - lim Δx→0 αΔu/Δx ④

∵ u = g(x) 在 x 处可导

∴ u = g(x) 在 x 处连续,lim Δx→0 Δu = 0

联合 ② 式可知 lim Δx→0 α = 0

∴ ④ = f'(u) * g'(x) = f'(g(x)) * g'(x)

ch5-8 微分及其运算、隐函数与参数方程函数求导

概念与定义

联立符号 -

本笔记中联立表达式用两个大括号符号表示开始与结束,如:

{

x = φ(t)

y = ψ(t)

{

可微 -

针对 y = f(x),当 x 变为 x + Δx 时,若有 Δy = A * Δx + o(Δx),其中 A 为 x 的函数且与 Δx 无关,则称 y 在 x 处可微

##

以下 A * Δx 简记为 AΔx

##

y = f(x) 在 x 点的微分 -

dy = AΔx

线性主部 -

AΔx 为 Δx 的线性主部,dy 是 Δy 的线性主部

导数与微分的关系 -

dy = f'(x)Δx

##

若 f(x) 在 x 处可微,则有 Δy = AΔx + o(Δx)

两边同除以 Δx:Δy/Δx = A + o(Δx)/Δx

令 Δx→0:lim Δx→0 Δy/Δx = A

根据导数定义即有:A = f‘(x),进而有 df(x) = f'(x)Δx

反之,若 f(x) 在 x 处可导,则有:lim Δx→0 Δy/Δx = f'(x),即 Δy = f‘(x)Δx + o(Δx) (Δx→0)

根据微分的定义,上式即说明 f(x) 在 x 处可微,且 dy = f'(x)Δx

综上,一元函数的可微性和可导性等价,即有关系式:dy = f'(x)Δx

##

##

导数和微分的关系l另参见 https://www.zhihu.com/question/22199657  马同学

##

微商 -

dy/dx,即函数微分与自变量微分的比

高阶微分 -

d^2y = d(dy) = d(f'(x)dx) = d(f'(x))dx = f''(x)(dx)^2 = f''(x)dx^2

##

(dx)^2 = dx^2

d(dx) = d^2x

复合函数高阶微分不可用上式,因为

dy = f'(u)du

因为 u 不是自变量,所以du 将依赖自变量 x,有 du = g'(x)dx

因此有:d^2y = d[f'(u)du] = [df'(u)]du + f'(u)d(du) = f''(u)du + f'(u)d^2u

##

莱布尼茨公式 -

[u(x)v(x)]^(n) = ∑(n, k = 0, C(k, n) * u^(n - k) * v^(k))

##

与二项展开式结构相仿

##

性质与定理

d[f(x) ± g(x)] = df(x) ± dg(x)

d[f(x) * g(x)] = g(x)df(x) + f(x)dg(x)

d[f(x) / g(x)] =[g(x)df(x) - f(x)dg(x)] / g^2(x)  (g(x) ≠ 0)

一阶微分的形式不变性

y = f(u),u = g(x),则 dy/dx = dy/du * du / dx = f'(u)du = f'(g(x))g'(x)

技巧与方法

隐函数求导法

由方程 F(x, y) = 0 定义的唯一单值可导函数 y = f(x) 可将 F 中含 y 的表达式看做为 x 的复合函数,再将等号两边对 x 求导:

x^2 + y^2 = 1

x^2 + f^2(x) = 1

2x + 2f(x)f'(x) = 0

∴ y' = f'(x) = -x / f(x) = -x / y

或利用微分形式不变性:

x^2 + y^2 = 1

d(x^2 + y^2) = d(1)

2xdx + 2ydy = 0

∴ y' = dy/dx = -x / y

参数方程表示的函数的求导法

{

x = φ(t)

y = ψ(t)

{

设 x = φ(t) 的反函数为 t = φ^-1(x),并设其满足可导条件

将 y 视为复合函数:y = ψ(t),t = φ^-1(x)

利用复合函数求导法:dy/dx = ψ'(t)(φ^-1(x))' = ψ'(t) / φ'(t) = (dy / dt) / (dx / dt)

引用声明:
本笔记(及本公众号发布的之前的数学分析笔记)的参考书目为《数学分析》第三版,高等教育出版社

2143556d3e7dab9c231e9e1ce81111a1.png 

笔记中其他引用源、参考源等请参见“##”内注释内容

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值