c++ 空间直线与平面夹角_利用空间向量证明平行与垂直,用向量证明立体几何问题有两种思路...

本文介绍了如何使用空间向量来解决立体几何问题,包括理解直线方向向量和平面法向量,证明线线、线面、面面的平行和垂直关系,并详细讲解了计算直线与平面夹角、点到平面距离的方法。通过建立空间直角坐标系和向量坐标表示,将几何问题转换为向量运算,简化了证明过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【考试要求】

1.理解直线的方向向量及平面的法向量;

2.能用向量语言表述线线、线面、面面的平行和垂直关系;

3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理;

4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;

5.能用向量方法解决点到平面、相互平行的平面的距离问题;

6.并能描述解决夹角和距离的程序,体会向量方法在研究几何问题中的作用.

【知识梳理】

1.直线的方向向量和平面的法向量

60539ad9f61e25e4a6f87488020574a1.png
cf9d107d5ab514c3c9c048c6b8d0b467.png
71942cf2f779e059a5ec2fb6c4460576.png

【微点提醒】

1.平面的法向量是非零向量且不唯一.

2.建立空间直角坐标系要建立右手直角坐标系.

3.线面角θ的正弦值等于直线的方向向量a与平面的法向量n所成角的余弦值的绝对值,即sin θ=|cos〈a,n〉|,不要误记为cos θ=|cos〈a,n〉|.

4.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n1,n2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n1,n2的夹角是相等,还是互补.

cfc49cc55c5ebdd999a9a0f8958d0320.png
3d83a8b6fdf3c7809db311584d3c8f45.png
81b40c3d8947084997fd92c34390918c.png
7b7a56abcf896b2a2b03bdfea9e47f58.png
1cf5b49229b3fc3eb582b6c7f85e8818.png

【规律方法】

(1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.

(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.

3ae9a190ff58e0be8ba65e5bb08e27b6.png
01d7149365e66204635e758d288bf4ae.png
d6125ad32083f6d2311278da890d2e6b.png

【规律方法】

(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.

(2)用向量证明垂直的方法

①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.

②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.

③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.

31bd6f25303430e1d9bf0765b46b30e2.png
2b87637ef30c074bb7e434b7a7f23dcd.png
c136ec9657ac086c77f91649a29695bf.png

考点三 用空间向量解决有关位置关系的探索性问题

角度1 与平行有关的探索性问题

a69390772f38fa9e9a12abe2e5e6ed5e.png
cca20d5589c6a8e66f247a8ab0ecde5c.png
ffeda4035a2068f0a0b7e5b924c6fc51.png

【规律方法】 解决立体几何中探索性问题的基本方法

(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.

(2)探索性问题的关键是设点:①空间中的点可设为(x,y,z);②坐标平面内的点其中一个坐标为0,如xOy面上的点为(x,y,0);③坐标轴上的点两个坐标为0,如z轴上的点为(0,0,z);④直线(线段)AB上的点P,可设为=λ,表示出点P的坐标,或直接利用向量运算.

fd5ca7149e15e5f3db75a4340986c818.png
8e3f5b602c6134209aa592993bbf72f7.png
c89eb1612f4b119c0922b569c055b999.png

【反思与感悟】

1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.

2.用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.

3.用向量的坐标法证明几何问题,建立空间直角坐标系是关键,以下三种情况都容易建系:(1)有三条两两垂直的直线;(2)有线面垂直;(3)有两面垂直.

【易错防范】

1.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a∥b,只需证明向量a=λb(λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.

2.用向量证明立体几何问题,写准点的坐标是关键,要充分利用中点、向量共线、向量相等来确定点的坐标.

6cbddfe283591d599d80fa4f7db8ae56.png
4b9b6f51c3535bba04c57bc1419ffceb.png
39275a428ea10ef1d14cb70fcc7f07bd.png
c5a443bc6301abd1e81e4daae9b1a7b4.png
12d7b57f84eedcce6607113b3c0b095a.png
f102dc96e8e4d6c17191ef24cd29417b.png
619409a06e372dc5a8c9ac7cfee9b442.png
d4f271849b127499184dfc9e6ab3326d.png
ac2fe10107e37eaa4143ab93d8c76322.png
e523a7486d4b86c4722adae9a0aede43.png
3622177d800387f9dd335c0ff18d0272.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值