交错级数如何判断收敛_浅谈级数的重排问题

级数的重排是在学习级数时的一个难点。级数的重排定理分为两个:第一个是关于绝对收敛的级数的重排定理,而第二个则是关于收敛,但非绝对收敛的级数的重排定理。后者也称为

重排定理。本文将对这两个重排定理进行详细的讨论,并分别给出证明。

本文是个人一些粗浅的整理,有错误请指正,感谢


有限级数(有限和)

交换参与有限和的数字的顺序是不会导致结果发生变换的。一种通俗的理解方式是“加法交换律”可以被有限次使用。下面我们考察有限和:

下面我们来交换一下式

中的某些项得到:

显然,如果我们只考察分母的话会发现,会发现这种交换其实是一个 置换

并且:

因此:

下面我们就对上面的例子做一下扩展。

是一个定义在
上的序列。对于任意的
,设
是一个双射,则:


我们使用数学归纳法进行证明。
首先是
时的情况。此时:

则:
现在假设对于任意一个双射
,都成立:
然后来证明对于任意一个双射
,都成立:

对于
显然有:

由于
是双射,所以存在一个
,使得
。则:

现在我们定义映射
为:

于是:

则现在我们要证明的是:

而容易验证地是,
是一个双射。因此根据归纳假设可知

无穷级数

现在我们开始讨论无穷级数的情况。在开始之前我们首先需要了解一些基本概念。

是一个定义在
上的序列,则表达式
(或简记为
)称为级数。级数可以理解为有限和的极限值。我们定义一个级数
的部分和序列为:

但部分和序列

收敛的时候,我们称级数
是收敛的。且定义:

时,我们称级数
发散到

级数

是收敛的,当且仅当:


由级数收敛的定义可知,级数
是收敛的,当且仅当其部分和序列:

收敛。而部分和序列
收敛的等价条件是
是一个
序列。即对于所有的
,存在一个
,使得对于所有的
都有
。因为
,所以这里我们只需要验证对于所有的
都有
就足够了。而:

是一个定义在
上的序列,并且具有以下性质:

则级数

是收敛的。

设级数
的部分和序列为:

现在我们考察序列
与序列

且:

由此可知序列
是单调递减的,而序列
是单调递增的。现在我们来说明序列
与序列
是有界的。

由于序列
是单调递减的,所以其最大值为
。现在我们来说明

由序列
的定义可知:

即无论
是偶数还是奇数,
的表达式都是一样的。现在我们不妨将
的通项写出来:

显然,由于是奇数项求和,且
,则:

且成立:

因此序列
是有界的。同理,我们根据
的定义有:

即无论
是偶数还是奇数,
的表达式都是一样的。现在我们同样可以将
的通项写出来:

显然,由于是偶数项求和,且
,则:

且成立:

因此序列
是有界的。由于单调有界序列是收敛的,于是序列
与序列
都是收敛的,记它们的极限值分别为

并且我们有:

而序列
是序列
的一个子列,因此

于是
。且由于:

于是根据夹逼准则有:

级数

称为绝对收敛的,当级数
收敛时。否则称级数
为条件收敛的。

下面我们来看一个例子。

首先我们先来证明映射:

是一个双射。

对于
,因此:
对于
,因此:
对于
,因此:

为了证明
是双射的,必须证明
是单射且满射的。首先我们先来说明
都是单射的。显然,
都是单射的,因为三者均为线性关系。现在我们要说明的是
的值域两两之间是不交的。我们有:

将可以整除
的数字映射为可以整除
的数字;
将减去
之后可以整除
的数字映射为全体大于
的奇数;
将减去
之后可以整除
的数字映射为除以
的数字。显然,集合:

的交集为空集,且
的值域
的交集也是空集,因此
是单射的。

现在我们再来说明
是满射的。对于
我们分为三种情况进行讨论。

找出一个
,使得
是奇数。

找出一个
,使得

其中
除以

找出一个
,使得

其中

于是
中的每个元素都至少有一个原像,因此
是满射的。

综上,
是双射的。

现在我们来考察级数:

级数

是一个交错级数,现在我们考虑使用
判据来判断其收敛性。其中
为:

现在我们需要验证

是否满足
判据的条件。

是交错序列,满足。

是严格单调递减的,进而是单调递减的,满足。

因为

,因此:

满足。

因此,由

判据可知,级数
收敛。

现在我们来证明级数:

是收敛的。其中

为式
中的

为级数
的部分和序列,即:

并且定义级数
的部分和为
,即:

定义:

则:

进而:

由于
的一个子列,于是
也收敛于
。则:

的一个子列,但单一子列的收敛并不能说明“父列”的收敛。所以仅由
不能推出
。但是由
我们可以知道:
收敛的等价条件是它是一个
序列。则:

现在我们不妨设
,则对于
以及
都有:

现在我们置
,则对于所有的
都有:

这是因为:

于是我们证明了
收敛于

显然,当

都收敛到
,但是我们知道
是收敛到
的(对此这里就不再讨论了,因为这又是一个不小的问题,下篇关于级数的文章再说吧),因此
并不会收敛到相同的值。

下面我们还需要来证明两件事情。

是一个有限或可数的集合。并设
是一个函数。则级数
是绝对收敛的,当且仅当:


这里需要分为两种情况讨论,第一种情况是
为一有限集合的时候。此时式
显然是成立的。现在我们来讨论
是可数集合的情况。
首先我们来证明必要性。

假设级数
是绝对收敛的,则存在一个双射
,使得
是绝对收敛的。现在我们考察集合:

容易验证,集合
是非空的,则由单选公理,我们可以找到一个元素
,使得:

由于
,于是
是一个有限集合,于是存在自然数的一个子集
,使得
,于是:

由于
是任意的,因此
是集合
的一个上界,因此:
然后我们来证明充分性。

假设
成立,并且假设级数
不是绝对收敛的,即级数
不是收敛的,这就说明存在一个双射
,使得序列:

不是上有界的。即存在一个
,使得对于所有的
都有
。现在我们不妨设:

是有界的,且:

这意味着:

矛盾。

是有限集合或者可数集合,设
是一个函数,且设
是绝对收敛的。则对于两个不交集合
,有
是绝对收敛的,且:


这里我们只证明
都是可数的情况,有限集合以及混合情况留作练习。由于
是绝对收敛的,则由
可知:

于是:

这蕴含了级数
都是绝对收敛的。因此存在双射:

使得:

都是绝对收敛的。由于
,于是我们可以设:

于是对于
,有:

现在令
可得:

即:

下面我们先来看第一个重排定理。这个重排定理告诉了我们:一个绝对收敛的级数

重排之后仍是绝对收敛的,且收敛到相同的值。

是一个绝对收敛的级数,并设
是一个双射,则级数
也是绝对收敛的,且:


。由于级数
是绝对收敛的,则级数
是收敛的。因此我们可以找到一个
使得:

这是可能的,因为部分和序列:

而这意味着
。然后我们置:

则:

现在我们断言,对于所有的
都有:

对于
,置:

则:

有:

即:

进而由一般形式的三角不等式有:

这里我们用到了:

且因此:

这样就证明了式
。它蕴含了级数
收敛于

最后我们来看到的是

重排定理。

级数

称为
无条件收敛的 ,当对于任意一个重排
,级数
都是收敛的。

是一个定义在
上额序列,且假设级数
是收敛的。我们置:

。则:

级数
是无条件收敛的,当且仅当级数
都收敛的时候。

当级数
是无条件收敛的,则对于每一个重排
都成立:

必要性:

假设
是发散的。由于
,因此
,因为上有界的单调递增序列具有极限值(以上论述已经老掉牙了,不再赘述)。

现在设
,使得
。并假设,对于
成立的索引集合为:

设第一个使得
的索引为

,使得
。并假设,对于
成立的索引集合为:

设第二个使得
的索引为

,使得
。并假设,对于
成立的索引集合为:

设第三个使得
的索引为

以此类推。则得到序列:

设由原始序列到上述序列的一个重排为
,则:

因为假设是级数
是无条件收敛的,因此出现矛盾。对级数
的论述也是类似的,依然使用反证法假设级数
发散。留做练习。
充分性:

是一个重排。因为
,则由
可知,当级数
是收敛的,则级数
也是收敛的,因此成立:

对级数
也有类似的论述,则:
式可以推得。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值