第五讲 交错级数、绝对收敛和条件收敛

一,负项级数可以通过添加负号转化为正项级数,因此不用讨论

二,交错级数

  • 定义:\sum_{n=1}^{\infty }(-1)^{n-1}u_{n}=u_{1}-u_{2}+u_{3}-...+(-1)^{n-1}u_{n}+...,(u_{n}> 0

三,交错级数的审敛法(又称Leibniz判别法)

  • u_{n}\geq u_{n+1}> 0,(n\in N),即逐项递减
  • \lim_{n\rightarrow \infty }u_{n}=0,即通项趋于0
  • \sum_{n=1}^{\infty }(-1)^{n-1}u_{n}收敛,其和s\leq u_{1}
  • 余项r_{n}=(-1)^{n}(u_{n+1}-u_{n+2}+u_{n+3}-...)
  • 截断误差:余项\left | r_{n} \right |\leq u_{n+1}

四,数列的极限理论

  • 一个数列,如果它的偶次项子数列收敛于s,奇次项子数列也收敛于s,那么整个数列将收敛于s。如图:

五,变号级数的审敛法

  • 任意变号级数:非正项级数,非负项级数,也非交错级数。
  • 设变号级数\sum_{n=1}^{\infty }u_{n}
  • 绝对收敛:若其绝对值级数\sum_{n=1}^{\infty }\left |u_{n} \right |收敛,则\sum_{n=1}^{\infty }u_{n}收敛
  • 推论:若\sum_{n=1}^{\infty }u_{n}发散,则\sum_{n=1}^{\infty }\left |u_{n} \right |也发散
  •  条件收敛:若其绝对值级数\sum_{n=1}^{\infty }\left |u_{n} \right |发散,而\sum_{n=1}^{\infty }u_{n}收敛

六,交错p-级数的敛散性

  • 定义:\sum_{n=1}^{\infty }(-1)^{n-1}\frac{1}{n^{p}},(p> 0
  • p> 1时:其绝对值级数\sum_{n=1}^{\infty }\frac{1}{n^{p}}收敛,则\sum_{n=1}^{\infty }(-1)^{n-1}\frac{1}{n^{p}}绝对收敛
  • 0< p\leq 1时:其绝对值级数\sum_{n=1}^{\infty }\frac{1}{n^{p}}发散,但其逐项递减\frac{1}{n^{p}}\geq \frac{1}{(n+1)^{p}}> 0,且通项\lim_{n\rightarrow \infty }\frac{1}{n^{p}}=0,根据交错级数审敛法\sum_{n=1}^{\infty }(-1)^{n-1}\frac{1}{n^{p}}条件收敛

七,比值审敛法的推广

  • \lim_{n\rightarrow \infty }\left |\frac{u_{n+1}}{u_{n}} \right |< 1,则\sum_{n=1}^{\infty }\left |u_{n} \right |收敛,则\sum_{n=1}^{\infty }u_{n}收敛
  • \lim_{n\rightarrow \infty }\left |\frac{u_{n+1}}{u_{n}} \right |> 1,则\sum_{n=1}^{\infty }\left |u_{n} \right |发散,因为\left |u_{n+1} \right |\geq \left |u_{n} \right |,所以\lim_{n\rightarrow \infty }u_{n}\neq 0,则\sum_{n=1}^{\infty }u_{n}发散

八,根值审敛法的推广

  • \lim_{n\rightarrow \infty }\left |\sqrt[n]{u_{n}} \right |< 1,则\sum_{n=1}^{\infty }\left |u_{n} \right |收敛,则\sum_{n=1}^{\infty }u_{n}收敛
  • \lim_{n\rightarrow \infty }\left |\sqrt[n]{u_{n}} \right |> 1,则\sum_{n=1}^{\infty }\left |u_{n} \right |发散,\lim_{n\rightarrow \infty }u_{n}\neq 0,则\sum_{n=1}^{\infty }u_{n}发散

九,绝对收敛和条件收敛级数的性质

  • \sum_{n=1}^{\infty }u_{n}\sum_{n=1}^{\infty }v_{n}都绝对收敛,则\sum_{n=1}^{\infty }(u_{n}+v_{n})绝对收敛,\sum_{n=1}^{\infty }u_{n}v_{n}绝对收敛
  • \sum_{n=1}^{\infty }u_{n}\sum_{n=1}^{\infty }v_{n}都条件收敛,则\sum_{n=1}^{\infty }(u_{n}+v_{n})不一定条件收敛,\sum_{n=1}^{\infty }u_{n}v_{n}不一定收敛
  • \sum_{n=1}^{\infty }u_{n}绝对收敛\sum_{n=1}^{\infty }v_{n}条件收敛,则\sum_{n=1}^{\infty }(u_{n}+v_{n})条件收敛

十,级数的重排(绝对收敛和条件收敛的区别)

  • 变号级数绝对收敛的充要条件是级数的正部和负部都收敛。如图:
  • 若变号级数条件收敛,则级数的正部和负部都发散。(逆命题不成立)。如图:
  • 绝对收敛级数的交换律:绝对收敛级数任意重排后,其和不变,敛散性不变。
  • 条件收敛级数不满足交换律:条件收敛级数任意重排后,其和可能改变,敛散性可能改变。(如果只是改变有限项的位置,不会对级数造成任何变化)。如图:

十一,判断极限敛散性的一般步骤

  • 48
    点赞
  • 194
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值