一,负项级数可以通过添加负号转化为正项级数,因此不用讨论
二,交错级数
- 定义:
,(
)
三,交错级数的审敛法(又称Leibniz判别法)
- 若
,(
),即逐项递减
- 且
,即通项趋于0
- 则
收敛,其和
- 余项
- 截断误差:余项
四,数列的极限理论
- 一个数列,如果它的偶次项子数列收敛于s,奇次项子数列也收敛于s,那么整个数列将收敛于s。如图:
五,变号级数的审敛法
- 任意变号级数:非正项级数,非负项级数,也非交错级数。
- 设变号级数
- 绝对收敛:若其绝对值级数
收敛,则
收敛
- 推论:若
发散,则
也发散
- 条件收敛:若其绝对值级数
发散,而
收敛
六,交错p-级数的敛散性
- 定义:
,(
)
- 当
时:其绝对值级数
收敛,则
绝对收敛
- 当
时:其绝对值级数
发散,但其逐项递减
,且通项
,根据交错级数审敛法
条件收敛
七,比值审敛法的推广
- 若
,则
收敛,则
收敛
- 若
,则
发散,因为
,所以
,则
发散
八,根值审敛法的推广
- 若
,则
收敛,则
收敛
- 若
,则
发散,
,则
发散
九,绝对收敛和条件收敛级数的性质
- 若
和
都绝对收敛,则
绝对收敛,
绝对收敛
- 若
和
都条件收敛,则
不一定条件收敛,
不一定收敛
- 若
绝对收敛
条件收敛,则
条件收敛
十,级数的重排(绝对收敛和条件收敛的区别)
- 变号级数绝对收敛的充要条件是级数的正部和负部都收敛。如图:
- 若变号级数条件收敛,则级数的正部和负部都发散。(逆命题不成立)。如图:
- 绝对收敛级数的交换律:绝对收敛级数任意重排后,其和不变,敛散性不变。
- 条件收敛级数不满足交换律:条件收敛级数任意重排后,其和可能改变,敛散性可能改变。(如果只是改变有限项的位置,不会对级数造成任何变化)。如图:
十一,判断极限敛散性的一般步骤