- 一开始,信息论是专门研究信息的有效处理以及可靠传输的一门科学。香农首次对信息论建立了数学模型,现在,信息论已经渗透到图像处理中,本小结就是研究互信息在医学图像配准中 的应用。并描述了几种关于信息论的处理方法
- 互信息的值并不是一个闭区间,优化函数多峰,容易陷入局部最优点。
1)信息论基础概念
1、熵是什么?
熵是表示分子的 混乱程度。越是混乱,熵越大。一开始熵是来源于物理学,后被香农量化到信息论中,表示信源的不确定程度。一般利用灰度直方图来统计像素灰度值的概率分布情况
2、香农熵:
(X表示离散的随机变量,p(x)表示离散的随机函数)
例子:
如上图:灰度级别越分散,灰度越分散,熵越大。
香农熵的性质:非负、凸、对称、具有极值性
3、联合熵和条件熵
注:如果把熵的概念扩展到一对随机变量中,他是衡量一对随机变量所包含的信息量,换句话说就是这两个变量的相似程度!!!
4、条件熵、边缘熵、联合熵之间的关系
例子:下面的图b-e是原始图像旋转10、20、30的联合灰度直方图分布
越不匹配,对应的联合灰度直方图越复杂。
5、互信息
1)互信息与联合熵
互信息通常用来描述两个图像之间的统计相相关性,通常用 I 表示
理论上,联合熵和互信息是类似的,描述图像的统计相关性,都可以敏感出图像之间的相关关系,图像的互信息和联合熵都可以作为一种配准测度。但是互信息针对两幅图像严重不i配是,引入了边缘熵,这个时候不会像联合熵一样产生错误配准的问题。
相对熵表示的是两个随机变量间距离的一种度量D,而互信息表示的是一对随机变量包含另一个随机变量之间的程度I,当两个实