python 图像刚性变换_(十)基于信息论的医学图像配准(传统)

本文探讨了信息论在医学图像配准中的应用,特别是互信息作为相似性度量的优越性。通过详细解释信息论的基本概念,如熵、联合熵和互信息,阐述了互信息如何在不同模态图像配准中避免错误配准。文章介绍了概率密度估计方法,如直方图和核密度估计,并讨论了基于互信息的配准算法流程,包括空间变换、搜索策略和相似性度量。最后,提到了几种优化的相似性度量方法,如归一化互信息和熵相关度量。
摘要由CSDN通过智能技术生成
  • 一开始,信息论是专门研究信息的有效处理以及可靠传输的一门科学。香农首次对信息论建立了数学模型,现在,信息论已经渗透到图像处理中,本小结就是研究互信息在医学图像配准中 的应用。并描述了几种关于信息论的处理方法
  • 互信息的值并不是一个闭区间,优化函数多峰,容易陷入局部最优点。

1)信息论基础概念

1、熵是什么?

熵是表示分子的 混乱程度。越是混乱,熵越大。一开始熵是来源于物理学,后被香农量化到信息论中,表示信源的不确定程度。一般利用灰度直方图来统计像素灰度值的概率分布情况

2、香农熵:

71586ae47c9a42e0463842453c189fec.png

(X表示离散的随机变量,p(x)表示离散的随机函数)

例子:

f1880512e32bd162afc9c4813709db40.png

98b7648df66719ccc0d4b7d368ee9ba3.png

如上图:灰度级别越分散,灰度越分散,熵越大。

香农熵的性质:非负、凸、对称、具有极值性

3、联合熵和条件熵

f73221d1016e81ab017977d00f56a4d3.png

1264f9351f63c40bb48b461040cb119c.png

注:如果把熵的概念扩展到一对随机变量中,他是衡量一对随机变量所包含的信息量,换句话说就是这两个变量的相似程度!!!

4、条件熵、边缘熵、联合熵之间的关系

424d2bed3b0f2392ed3c809b3e5fcfd1.png

ba5ecb1bd6da92e24ea4395f315b7245.png

例子:下面的图b-e是原始图像旋转10、20、30的联合灰度直方图分布

ff7c62c9c57bfd563154e4df3b3cbb6e.png

越不匹配,对应的联合灰度直方图越复杂。

5、互信息

1)互信息与联合熵

互信息通常用来描述两个图像之间的统计相相关性,通常用 I 表示

理论上,联合熵和互信息是类似的,描述图像的统计相关性,都可以敏感出图像之间的相关关系,图像的互信息和联合熵都可以作为一种配准测度。但是互信息针对两幅图像严重不i配是,引入了边缘熵,这个时候不会像联合熵一样产生错误配准的问题。

相对熵表示的是两个随机变量间距离的一种度量D,而互信息表示的是一对随机变量包含另一个随机变量之间的程度I,当两个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值