散乱点云的孔洞识别和边界提取算法研究
王春香,孟
宏,张
勇
【摘
要】
针对逆向工程中已有孔洞识别算法执行效率低、孔洞边界点提取不完
整等问题,提出一种新的基于
KD
树和
K
邻域搜索的点云孔洞识别及边界提取
算法。该算法首先利用
KD
树建立散乱点云的拓扑关系。其次,计算点云密度、
定义距离阈值作为判别参数,利用
K
邻域搜索计算每个点与其
K
个邻域点的距
离,距离大于阈值的点即为边界点。再次,采用单坐标搜索法去除外边界,保
留孔洞边界。最后,利用边界追踪算法获取完整的孔洞边界点。以涡轮叶片和
挖掘机斗齿为研究对象,对点云上的自然孔洞利用该算法进行识别。结果表明,
该算法能够快速地识别出散乱点云中孔洞,并能完整地提取出孔洞边界点,实
用性强。
【期刊名称】
《机械设计与制造》
【年
(
卷
),
期】
2019(000)003
【总页数】
4
【关键词】
散乱点云;
KD
树;
K
邻域搜索;单坐标搜索法;边界追踪;孔洞边
界
来稿日期:
2018-09-04
基金项目:内蒙古自治区高等学校科学研究项目(
NJZY16167
)
1
引言
在三维扫描过程中由于测量工具和技术的限制、待测模型自身缺陷、光照或反
射性等因素的影响,不可避免地会出现采样点缺失,形成点云孔洞。点云的孔
洞识别和边界提取作为孔洞修补、曲面重构的首要环节,其重要性不言而喻。