泰勒公式推导过程_泰勒展开的技巧应用

1. 有限差分 Taylor Table

这是在数值微分中常用的技巧。可以用等距网格中给定几个点的线性组合表示某一点处的微分,乃至高阶微分,并可顺便求出该差分方法的精度。

是关于
的函数,在
轴上有
个等距网格,记

我们知道前向差分,后向差分和中心差分,以二阶导数的中心差分为例:

从主误差项可知,以上数值微分为2阶精度。

现在问题来了:

  1. 有时我们并不满足于已有公式的精度,想要在等式右边加入更多点,以推导出精度更高的公式;
  2. 在网格的边界处,例如
    处,我们不能得到
    ,因而不能根据上述公式求出

是否有一种方法,能方便地推导有限差分公式呢?我们引入 Taylor Table,以下例子中可以看到,表中的每一行都是一个泰勒展开。通过将尽可能多的低阶误差项系数(列元素之和)变为0,我们可以的得到理论上精度最高的有限差分公式。

e.g. find most accurate formula for

using

let

,construct Taylor Table:

f01ad874120847b015f10b4836b68bcc.png
Taylor Table

To get the highest accuracy, we must set as many of the low-order terms to zero as possible. We have 4 free coefficients; therefore, we can set the coefficients of the first 4 terms to zero.

Thus, the leading error term is:

Formula:

The order of the term is 3.

2. 分式的泰勒展开

这是我自己总结的一个小技巧。

问题:有分式

,求
处的泰勒展开式.

以上问题中虽然要在0处展开,但很容易扩展到在任意处的泰勒展开。

解决问题的传统步骤是分别计算

的各阶导数,然后按公式展开,但由于是分式,所以这种方法比较麻烦且容易算错。对于这类分式泰勒展开问题,我们可以推导出如下较为方便的解法:
  1. 分别计算
    的泰勒展开,假设展开为:

  1. 如要将
    展开至第
    项,则构造下三角矩阵
    如下:

  1. 解方程组
    ,其中
  2. 可得
    在0处的泰勒展式:

举个例子:

所以有:

这和直接对

做泰勒展开的结果相同。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值