当一个序列满足对于任意的前 项和都满足不小于_陶哲轩实分析:序列极限

定义①:∀x,y∈R,有d(x,y)=|x-y|

定义②:设

是实数,则称实数x,y是
接近的,当且仅当

定义③:设

是实数,实数列
稳定的,当且仅当,序列任意的一对
对于任意自然数j、k都是
接近的。
是最终
稳定的,当且仅当,存在自然数m,
。称
是柯西序列,当且仅当,
,该序列都是最终
稳定的,即

定义④:设

是实数,并且L也是实数,实数列
接近于L的,当且仅当,∀n≥N,这个
和L都是
接近的,称
是最终
接近于L的,当且仅当,存在m≥N,使得
接近于L的,称
收敛到L,当且仅当,对于任意的
,它都是最终
接近于L的。

命题1

收敛到L,当且仅当

证明:

由上述定义,展开易得命题1

命题2:设L≠L'是两个实数,若

收敛到L,则
不收敛到L'。

证明:见书

定义⑤:若

收敛到实数L,则称这个序列是
收敛的,其极限为L,记作

命题3:设

是收敛的实数列,则它是柯西序列。

证明:

根据命题1可得

我们分别令n=j,n=k,那么我们有

由于

故有

得证命题3

命题4:设

是有理数柯西序列,那么有

证明:

令该序列的极限为L,假设此实数不等于L,即

那么根据实数相等的定义,L等价的柯西序列

与该柯西序列不等价。

故有

故有

但我们知道

故矛盾,得证命题4

(实际上我认为直接用命题3就可以证明这一命题,但感觉那样证明没有充足的说明力,于是还是用了反证法)

定义⑥:一个实数列

界于实数M,当且仅当
,称一个序列是有界的,当且仅当,它界于某实数。

命题5:实数的收敛序列是有界的。

证明:略

命题6:设

是收敛的实数序列,和任意实数c,并且有实数x、y使得
,那么有以下命题成立:

1.

2.

3.

4.

5.

6.设

,那么有

证明:

我们知道

于是有

由于

收敛,因此有界,故上式等价于

是存在的

根据命题4,我们可以将每一个极限替代为一个实数的有理数柯西序列表达形式,然后根据之前实数加法乘法的证明,得证1,2

根据2,令c为一极限,得证3

当x=y时,有max(x,y)=x,并且存在N*使得∀n≥N有

故有

当x≠y时,显然有

得证4,同理得证5

由于

并且根据

故有

根据2和

得到

得证命题6

命题7

是实数列,并且有
,那么有任意自然数
使得

证明:由于m>n,故有n+k=m,k为正整数

当k=1时,命题显然成立

现在假设命题成立,那么我们有

并且由于

根据序的传递性可得证命题7

命题8:设

是收敛到实数c的实数序列,并且N'>N,那么
收敛到c当且仅当
收敛到c

证明:

反蕴含根据序的传递性显然成立,故下面证明蕴含

由于N'>N,并且我们知道一个柯西序列去掉前面的一部分,得到的新序列与之前的序列等价

根据命题4可得蕴含

得证命题8

命题9:设

是收敛到实数c的实数序列,并且k是自然数,那么有
收敛到c当且仅当
收敛到c

证明:

根据命题8,令N'=N+k,显然易得命题9

命题10:设

分别是有理数和实数,而且
是实数列,则有
当且仅当

证明:

反蕴含显然成立,下面我们证明蕴含

我们知道任意两实数之间都存在有理数,故对于任意的

,都存在

由于

,故根据序的传递性可得

得证命题10

定义⑥

,并且
,R*为广义实数系,一个广义实数x是有限的,当且仅当它是一个实数,一个广义实数是无限的,当且仅当它等于正负无穷之一。

定义⑦:设x、y是广义实数,那么称x≤y,当且仅当下列命题之一成立

1.x,y是实数,并且作为实数,有x≤y

2.

3.

称x<y当且仅当x≠y∧x≤y,有时我们会反过来写。

命题11:设x、y、z是广义实数,那么有下列命题成立

1.x≤x

2.x<y,x=y,x>y恰好有一成立

3.若x≤y,y≤z,则x≤z

4.若x≤y,则-y≤-x

证明:

当x、y、z是实数时,四个命题显然成立,因此我们只需要讨论无穷的情况就可以了。

,显然自反性满足,若
,根据定义⑦显然成立

得证1

,则x>y不成立,此时若
,则x=y,并且根据定义,显然x<y不成立,反之根据定义,只能是x<y

,则x<y不成立,此时若
,则x=y,并且根据定义,显然x>y不成立,反之根据定义,只能是x>y

得证2

分类讨论x,y的无穷情况,即得证3

,则根据1,4显然成立

,则根据1,4显然成立

,则前提条件不成立

,则根据定义可得4成立

得证命题11(实际上我显然有许多情况没有完成分类讨论,但我着实觉得这样证明没有意思,因此就随意了……)

定义⑧:设E⊆R*,若E⊆R,则sup(E)如之前定义一般,若

,则
,若
,则
,并且
,其中-E={-x:x∈E}

命题12:设E⊆R*,则有

1.∀x∈E∃x≤sup(E)∧x≥inf(E)

2.设M为E的上界,则有sup(E)≤M

3.设M为E的下界,则有inf(E)≥M

证明:

我们只讨论无穷的情况

由于正无穷总是大于等于所有,并且负无穷总是≤所有,因此得证1

若E包含正无穷,则M为正无穷,得证2

若E包含负无穷,则M为负无穷,得证3

定义⑨:设

是实数列,则我们定义
是集合
的上确界和下确界。

(上确界是关于集合的一个定义,那么对于一个序列的上确界,我们将序列的所有元素放在一个集合中,由于我们并没有特别规定这个集合的序关系,因此这个集合序关系就自动由实数的序关系确定了,于是这成为了实数集的一个子集,那么也就有了上确界)

命题13:设

是实数列,并设
,则
。若
的上界,则x≤M。∀y<x的广义实数y,都至少存在一个n≥N,有
。同样的,若
,则
。若
的下界,则x≥M。∀y>x的广义实数y,都至少存在一个n≥N,有

证明:

由于x是该序列的上确界,故

并且对于任意上界M都有x≤M。

假设不存在这样的n,那么对于任意的n≥N,或

,则y是上界,显然矛盾,若
,则x是下界,显然矛盾

我们可以举出一个反例,即∃n≥N使得

,则显然有

同理可得下确界的情况,于是得证命题13

命题14:设

是实数列,并且有有限的上界M∈R,
,则它是收敛的,有
,单调序列收敛,当且仅当它是有界的。

证明:

显然我们有

故只需要证明其极限等于上确界就可以了

我们知道,

,那么根据命题13可得存在至少一个项使得

由于这是一个增序列,因此任意k>s的整数都有

由于

,并且这个序列是有上确界的,我们知道该序列的任意元素与x相减后都是负数,因此对不等式两边同时进行负运算等价于进行绝对值运算,并且此举会不保序。

同理可得下确界的情况,综合起来可得证命题14

定义⑩:设

是实数列,x是实数,并且
是正实数,称x是
附着于
的,当且仅当,存在n≥N使得
接近于x的,称x是持续附着于
的,当且仅当,∀m≥N,它都是
附着于
的,称x是
极限点,当且仅当,对于
,它都是持续附着于
的。

命题15:实数x是实数列

的极限点,当且仅当

证明:展开定义⑩即可得

命题16:设

是收敛于c的序列,则c是该序列仅有的极限点。

证明:

首先我们知道

那么我们假设c不是该序列的极限点,那么

显然矛盾

现在假设该序列存在另一个极限点d,那么令

我们有

显然矛盾,故得证命题16

定义⑪:设

是收敛于c的序列,那么我们定义序列
,其中
,则序列
上极限
。类似的我们有
,序列
下极限

(只谈上极限,可以看到我们首先定义的新序列的每一项都是一个序列的上确界,如果是第一项,那么就是原序列从1开始后的上确界,如果是第二项,那么就是原序列从2开始的上确界,最终构成了一个上确界的序列,然后这个上确界的序列的下确界称作原序列的上极限)

命题17:设E⊆R和a∈R,若supE>a,则∃x∈E∃x>a。若infE<a,则∃x∈E∃x<a。

证明:

假设∀x∈E∃x≤a,则a是E的上界,故有a≥supE

矛盾

假设∀x∈E∃x≥a,则a是E的下界,故有a≤infE

矛盾,得证命题17

命题18:设

是实数列,并且广义实数L+和L-分别是该序列的上极限和下极限,那么我们有以下命题成立:

1.

2.

3.

4.

5.

6.若c是该序列的极限点,则

7.有限的上下极限是序列的极限点。

8.设c是实数,则

证明:

我们知道上极限的定义,由此可得

,那么根据命题13可得,存在m≥N使得这一序列的所有元素都小于x,由于这一序列的所有元素正是上确界,故得证1

同理可得2

,故x小于这一序列的所有上确界的下确界,故x小于这一序列的所有上确界

假设存在一m使得任意的n≥m都有

则x是起始号码为m的该序列的上界

故矛盾,得证3,同理得证4

现在我们假设存在m使得

由于m≥N,故后者是前者的子集,因此同样的上确界不可能存在这一情况,因此

并且我们知道序列

的下确界小于等于该序列的所有项,即

故根据序的传递性可得

同理可得

由于

在集合非空时恒成立,而我们知道无穷序列构成的集合肯定非空,故此恒成立

因此我们有

恒成立

现在假设

则根据命题17可得

同样的根据命题17可得

,但
恒成立

故矛盾,故有

,根据序的传递性得证5

假设

,故存在

故有

故c是这个序列的上界,并且不是这个序列的上确界

因此根据上确界的另一种定义有

故有

由于c是上界,故

故有

然而我们有

所以

则矛盾,故

故有

由于实数与整数不等势,故矛盾(我这算是用了未来的结论,不过也有疑虑,因为这里似乎也可以说是有理数,而有理数与整数是等势的,因此我上网查了下,得到启发有了下面的证明,比刚开始的好……)

假设

,根据1可得

故有

由于任意实数之间都存在新实数,故有

根据极限点的定义可知

显然矛盾,同理可得

,得证6

对于7,我们只证明上极限的情况,下极限类似同理

根据3,令

可得

假设

,则根据1可得

由于小于号没有自反性,故矛盾,故有

综合可得

故有

故上极限是极限点,得证7(这里我没有看到有限的这个限定在证明中的作用,但考虑到极限点必然是有限的,因此也就能够理解了,但极限点也可以定义为无限的,因此在极限点无限之后,应该可以根据这个证明直接得到无限上极限是极限点)

根据命题16可得c是序列仅有的极限点,根据6可得

根据1和2可得

故有

,则根据命题16可得c是唯一极限点,并且

若c是非负的,那么等式两边同时加c可得

假设

,则根据6可得
,根据3可以得到对于任意的
,存在一个
使得

然后我们可以找到一个尽可能小的正实数使得

矛盾,因此令c是负数,则减c会增大,因此根据序的传递性可得

故c=0,但c是负的,因此矛盾,故可得

同理可得

得证命题18

下面给出一个8的有迷惑性的证明,这一证明是一开始我自己搞出来的,因为结论有明显的问题导致我明白证明有问题,我写的细一点,至于为什么错误我已经明白,请考虑这个例子

,如果读者还不明白,可以向我提问。

先假设

这种情况,根据3可得对于任意的
,存在一个
使得

故有

由于任意实数之间必有新实数,存在

对于任意的
,存在
使得

由于c是序列的极限点,故对于任意的

对于任意的
,存在
使得

矛盾,故有

同理可得

命题19:设

是两个实数列,并且对于一切n≥N,都有
,则有不等式
成立

证明:

由于上确界是上界,故有

根据序的传递性可得

故后者是前者的上界,上界一定大于等于上确界,故有

同理可得下确界的形式

由第一个不等式可得

恒成立

故根据第二个不等式可得

同理可得下极限的形式,得证命题19

(我们令

,则
这满足了习题6.4.6)

命题20:设

是实数列,且
,以及
,则

证明:色情的夹逼定理,终于要证明这厮了,有种激动万分的感觉

根据命题18可得

根据命题19可得

(若不等于L,那么会导致序无法传递)

根据命题18可得

得证命题20

命题21:设

是实数列,
存在为0当且仅当
存在为0。

证明:

根据极限定义可得

反过来同理,得证命题21

(显然依照证明过程可以看出来对于非零,此推论不成立)

命题22:设

是实数列,其是柯西序列,当且仅当它是收敛的。

证明:

由于命题3,故我们只需证明柯西序列都是收敛的就行了。

由于是柯西序列,故

令j=n,k=m,展开不等式可得

对于n≥m恒成立

是序列
的上界,因此

同理可得

根据命题18的5可得

故有

根据上下确界的定义可得

根据命题18的5可得

不等式同减去下极限可得

由于

故有

于是根据序的传递性可得

,那么令
(由于
是任意选取的,因此这是可以的)

则矛盾,故

根据命题18的8可得序列收敛于上下极限确定的极限值。

得证命题22

命题23:设

是实数列,c是实数,并且N'>N是整数,那么c是
的极限点/上极限/下极限,当且仅当,c是
的极限点/上极限/下极限。

证明:

对于极限点有

由于m是任意的,故直接蕴含了c是

的极限点

对于

那么对于N<m<N'这一段,显然

都大于这一部分,故c是
的极限点

对于上极限,

少了N'和N之间这一段,即有限序列
,这一有限序列的元素根据上确界的性质肯定是大于等于
的所有元素的,即此序列的上界

的下确界若是不同,那就意味着有限序列
中存在元素小于
的所有元素,这样的元素是
的下界

一个元素既是一个无穷序列的上界还是其下界,那么这一无穷序列是常序列,常序列无所谓起始号码,因此下确界必然相同,故矛盾,因此

的上极限是一样的。

同理可得它们的下极限是一样的,得证命题23

定义⑫:一个实数序列以正(负)无穷为极限点,当且仅当,该序列不存在有限的上界(下界)。

命题24:上/下极限是一个序列的最大/小极限点。

证明:

根据命题18的6,7可得有限的上下极限是一个序列的最大/小极限点

如果一个序列的上极限是正无穷,则

的所有元素都是正无穷,故该序列不存在有限的上界,故以正无穷为极限点,故此极限点是最大极限点

如果一个序列的上极限是负无穷,则

的存在元素趋近于负无穷,即
,则序列

因此序列不存在有限的下界,故因负无穷为极限点

假设序列存在非负无穷的极限点,则根据命题18的6可得矛盾

同理可得下极限的情况,得证命题24

(我们构造一个这样的序列来完成习题6.4.9,设正整数k和实数列

当n≠3k时,
,当n=3k时,

命题25:设

是实数列,构造序列
的所有元素都是
的极限点,则
的极限点是
的极限点。

证明:

根据命题15可得

以及

二者相加,根据绝对值的性质可得

得证命题25

命题26:对于任意正整数k,有

证明:

根据n次根的性质可得这一序列是递减序列,并且以0为下界,故这个序列存在极限,其极限为此序列的下确界,有

根据命题6的2,我们让L自己和自己连乘k次得到

我们知道这一极限为0,故有

得证命题26

命题27:设x是实数,当

时,极限
。当x=1时,
,当x=-1∨|x|>1时,
是发散的。

证明:

当0<x<1时,则序列是单调是递减的,有一个下界0,故有极限L,由于

,则根据极限定律可得xL=L,故有L=0

当x=0时,极限显然为0,x=1时,极限显然为1

当-1<x<0时,序列是单调递增的,有上界0,故有极限L,由于

,则根据极限定律可得xL=L,故有L=0

当x=-1∨|x|>1时,假设存在极限L,则由于

,则根据极限定律可得xL=L,若L=0,则矛盾,若x=1,则矛盾,故矛盾,得证命题27

命题28

证明:

根据命题27,由于当x>1时,极限

是发散的,并且是单调增的,恒大于1的,故任意M>0都存在一个
的元素比其大,由n次根的性质可令两边同时取n次根,以及
可得

假设这个序列不存在下界,那么根据我们上面的证明可得矛盾,故序列存在下界

假设不是单调减的,即存在n使得

我们令不等式两边同时n+1次幂,故有

故有

由于x>0故有

不等式两边同时升n次幂,故有

取x=2,显然矛盾,故序列是单调减的,故其极限是其下确界。

假设1不是序列的下界,则存在n使得

由上可得矛盾,故1是下界

假设1不是下确界,则存在下界N>1

我们令

由于这里x和

实际上是固定的,因此一定存在n使得不等式不成立,故矛盾,得证命题28

命题29:对于任意有理数q,有

证明:

根据命题26可得

等式两边同时升q次幂,得证命题29

(虽然证明灰常不严谨,但懒癌发作的我表示未来一定会仔细证明的……感觉立flag永远不会实现?)

定义⑬:设

是实数列,称后者是前者的子序列,当且仅当,存在函数f:N→N有

命题30:子序列关系是自反的、传递的。

证明:

令f(n)=n可得子序列关系是自反的。

由函数的复合可得子序列关系是传递的。

得证命题30

(我们可以找到这样的两个子序列虽然不一样,但互为子序列,我们令

为0当且仅当n为奇数,为1当且仅当n为偶数,另一个与之不同的序列刚好与之相反,但他们是互为子序列的)

命题31:设

是实数列,L是实数,则
当且仅当
的任意子序列

证明:

由于

用f(n)代替n得任意子序列收敛于L

由于

的任意子序列
,根据子序列具有自反性可得

命题32:设

是实数列,L是实数,则L是序列的极限点,当且仅当,存在序列的子序列收敛到L

证明:

我们知道

由于m是任意选取的,故这一函数是可能的,则由这一函数造就的子序列是收敛于L的。

存在序列的子序列收敛到L,设该子序列为

那么有

替换得到

得证命题32

命题33:设

是有界序列,则该序列存在子序列收敛。

证明:

设L是上极限,由于序列是有界的,故上极限不是无限的。因此L是极限点,根据命题32可得,存在收敛子序列。得证命题33

命题34:设

是无界序列,则它存在子序列
使得

证明:

对于任意自然数j,我们令

由于序列是无界的,这意味着∀x∈R都存在该序列的元素a使得|a|>x

故我们定义的集合不是空集,然后我们令

于是有

前者的极限是0,后者也是,于是根据夹逼定理可得中间的那厮极限是0

然后根据命题21可得

得证命题34

命题35:设x>0,a是实数,

是有理数序列,收敛到a,则

证明:见书

定义⑭:设x>0是实数,a是实数,

是收敛到a的有理数序列,那么有

命题36:设x,y是非负实数,并且n,m是实数,那么有以下命题成立

1.

2.

3.

4.若n>0,则

5.若x>1,

,若x<1,则

证明:懒癌再次发作……

立个flag,我一定会补上这些证明的!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值