这一章是到目前为止看的最费劲的,第二费劲的是第3章集合论
8.3/8.4/8.5后面习题没做,感觉比较孤立,如果以后有需要的再回过头来看吧
8.1 可数性
习题
8.1.1
<=
反证法,如果集合有限,那么根据3.6.14(c),真子集不可能有同样的基数,矛盾。
=>
无限集合必然包含一个子集,这个子集到N的双射。假定为 A:f(0),f(1),... ,那么 B:f(1),f(2),... 为真子集,并且存在双射:A->B f(n+1)。
8.1.2
方法1
使用习题4.4.2无限下降原理最简单,因为集合不可能没有最小值。
方法2
归纳法,可以对m归纳,当m为0,那么显然0就是,归纳假设对于m,有最小元n,那么对于m+1,如果n属于集合,那么就是n,如果n不属于集合,那么就是m+1,证明完成。
方法3
使用最小上界原理,定理5.5.9,
考虑集合 {
x:x≤m, m∈X} ,0属于这个集合,这个集合不为空,所以一定有最小上界n,这个最小上界一定是自然数,否则 n+ε 也是上界。这个自然数一定属于集合X,否则n+1也是上界。
8.1.3
无限集(?),反证法,如果为有限集,则集合X为这个有限集加上所有小于n的 am ,为有限集
(?) an 增序列
这么显然也要证明呀?
(?)上一个(?)的直接结果
(?) an∈X 根据 an 的定义
8.1.4 没提示做不出来
A为N的子集(可能是真子集)。当f限制在A上,则对于任意 m≠m , am≠an ,否则假设 m<n ,则n与A的定义矛盾,不应该出现在A中,证明了单射,还需要证明映上。对于f(N)中的任意元素f(n),如果f(n)不等于 f(m)m<n ,那么n位于A中,f(n)也出现在f(A)中,否则存在 m<n,f(m)=f(n) ,m位于A中并且f(n)=f(m)。
8.1.5
X可数,那么存在N到X的双射g(N)=X,那么 f∘g 为函数,根据8.1.8证明完成。
8.1.6
=>
A至多可数,如果A有限,那么显然。如果A无限,那么可数,存在A到N的双射,双射是单射。
<=
如果A有限,那么自动完成了证明。如果A无限,那么f(A)为N的子集,根据8.1.6,f(A)可数并且映上,证明完成。
8.1.7
感觉提示已经完成了证明,因为h(N)为函数,使用推论8.1.9即可。
8.1.8
f(m,n):=(n,m)为双射
8.1.9
8.1.10
对角线法
0 1 2 3 4 5
1
2
3
8.2 在无限集合上求和
定理8.2.2的证明
证明过程主要用到命题6.3.8,从有限到无限。
第二个等式可以从命题7.4.3推出,因为无线和绝对收敛,并且推论8.1.13证明NxN可数。
为什么1
为什么有限集合和小于L,根据提示,g(X)有限必然有界,而L是上界。
为什么这就够了
因为这就是实数相等的定义
习题
8.2.1
引理8.2.3
如果X有限,那么两个命题都自然成立。
考虑X可数无限,那么如果f(x)绝对收敛,那么必然收敛到L。类似定理8.2.2的证明,有 ∑x∈A|f(x)|≤L ,根据命题6.3.8证明完成。
如果 sup∑x∈A|f(x)|<∞ ,那么必然小于某个正实数L,根据命题6.3.8,证明完成。
8.2.2
{
x∈X:|f(x)|>0}=∪{
x∈X: