keras保存模型_tensorflow2保存和加载模型 (tensorflow2官方教程翻译)

f87bc8452da84edf55f4efdb1c0a080b.gif

模型进度可以在训练期间和训练后保存。这意味着模型可以在它停止的地方继续,并避免长时间的训练。保存还意味着您可以共享您的模型,其他人可以重新创建您的工作。当发布研究模型和技术时,大多数机器学习实践者共享:

  • 用于创建模型的代码
  • 以及模型的训练权重或参数

共享此数据有助于其他人了解模型的工作原理,并使用新数据自行尝试。

注意:小心不受信任的代码(TensorFlow模型是代码)。有关详细信息,请参阅安全使用TensorFlow 。

选项

保存TensorFlow模型有多种方法,具体取决于你使用的API。本章节使用tf.keras(一个高级API,用于TensorFlow中构建和训练模型),有关其他方法,请参阅TensorFlow保存和还原指南或保存在eager中。

1. 设置

1.1. 安装和导入

需要安装和导入TensorFlow和依赖项

pip install h5py pyyaml

1.2. 获取样本数据集

我们将使用MNIST数据集来训练我们的模型以演示保存权重,要加速这些演示运行,请只使用前1000个样本数据:

from __future__ import absolute_import, division, print_function, unicode_literalsimport os!pip install tensorflow==2.0.0-alpha0import tensorflow as tffrom tensorflow import kerastf.__version__(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()train_labels = train_labels[:1000]test_labels = test_labels[:1000]train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0

1.3. 定义模型

让我们构建一个简单的模型,我们将用它来演示保存和加载权重。

# 返回一个简短的序列模型 def create_model(): model = tf.keras.models.Sequential([ keras.layers.Dense(512, activation='relu', input_shape=(784,)), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model# 创建基本模型实例model = create_model()model.summary()Model: "sequential"_________________________________________________________________Layer (type) Output Shape Param # =================================================================dense (Dense) (None, 512) 401920 _________________________________________________________________dropout (Dropout) (None, 512) 0 _________________________________________________________________dense_1 (Dense) (None, 10) 5130 =================================================================Total params: 407,050Trainable params: 407,050Non-trainable params: 0_________________________________________________________________

2. 在训练期间保存检查点

主要用例是在训练期间和训练结束时自动保存检查点,通过这种方式,您可以使用训练有素的模型,而无需重新训练,或者在您离开的地方继续训练,以防止训练过程中断。

tf.keras.callbacks.ModelCheckpoint是执行此任务的回调,回调需要几个参数来配置检查点。

2.1. 检查点回调使用情况

训练模型并将其传递给 ModelCheckpoint回调

checkpoint_path = "training_1/cp.ckpt"checkpoint_dir = os.path.dirname(checkpoint_path)# 创建一个检查点回调cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1)model = create_model()model.fit(train_images, train_labels, epochs = 10, validation_data = (test_images,test_labels), callbacks = [cp_callback]) # pass callback to training# 这可能会生成与保存优化程序状态相关的警告。# 这些警告(以及整个笔记本中的类似警告)是为了阻止过时使用的,可以忽略。 Train on 1000 samples, validate on 1000 samples ...... Epoch 10/10 960/1000 [===========================>..] - ETA: 0s - loss: 0.0392 - accuracy: 1.0000 Epoch 00010: saving model to training_1/cp.ckpt 1000/1000 [==============================] - 0s 207us/sample - loss: 0.0393 - accuracy: 1.0000 - val_loss: 0.3976 - val_accuracy: 0.8750 

这将创建一个TensorFlow检查点文件集合,这些文件在每个周期结束时更新。

文件夹checkpoint_dir下的内容如下:(Linux系统使用 ls命令查看)

checkpoint cp.ckpt.data-00000-of-00001 cp.ckpt.index

创建一个新的未经训练的模型,仅从权重恢复模型时,必须具有与原始模型具有相同体系结构的模型,由于它是相同的模型架构,我们可以共享权重,尽管它是模型的不同示例。

现在重建一个新的,未经训练的模型,并在测试集中评估它。未经训练的模型将在随机水平(约10%的准确率):

model = create_model()loss, acc = model.evaluate(test_images, test_labels)print("Untrained model, accuracy: {:5.2f}%".format(100*acc))1000/1000 [==============================] - 0s 107us/sample - loss: 2.3224 - accuracy: 0.1230Untrained model, accuracy: 12.30%

然后从检查点加载权重,并重新评估:

model.load_weights(checkpoint_path)loss,acc = model.evaluate(test_images, test_labels)print("Restored model, accuracy: {:5.2f}%".format(100*acc))1000/1000 [==============================] - 0s 48us/sample - loss: 0.3976 - accuracy: 0.8750Restored model, accuracy: 87.50%

2.2. 检查点选项

回调提供了几个选项,可以为生成的检查点提供唯一的名称,并调整检查点频率。

训练一个新模型,每5个周期保存一次唯一命名的检查点:

# 在文件名中包含周期数. (使用 `str.format`)checkpoint_path = "training_2/cp-{epoch:04d}.ckpt"checkpoint_dir = os.path.dirname(checkpoint_path)cp_callback = tf.keras.callbacks.ModelCheckpoint( checkpoint_path, verbose=1, save_weights_only=True, # 每5个周期保存一次权重 period=5)model = create_model()model.save_weights(checkpoint_path.format(epoch=0))model.fit(train_images, train_labels, epochs = 50, callbacks = [cp_callback], validation_data = (test_images,test_labels), verbose=0)Epoch 00005: saving model to training_2/cp-0005.ckpt......Epoch 00050: saving model to training_2/cp-0050.ckpt

现在,查看生成的检查点并选择最新的检查点:

latest = tf.train.latest_checkpoint(checkpoint_dir)latest 'training_2/cp-0050.ckpt'

注意:默认的tensorflow格式仅保存最近的5个检查点。

要测试,请重置模型并加载最新的检查点:

model = create_model()model.load_weights(latest)loss, acc = model.evaluate(test_images, test_labels)print("Restored model, accuracy: {:5.2f}%".format(100*acc)) 1000/1000 [==============================] - 0s 84us/sample - loss: 0.4695 - accuracy: 0.8810 Restored model, accuracy: 88.10%

3. 这些文件是什么?

上述代码将权重存储到检查点格式的文件集合中,这些文件仅包含二进制格式的训练权重.

检查点包含:

  • 一个或多个包含模型权重的分片;
  • 索引文件,指示哪些权重存储在哪个分片。

如果您只在一台机器上训练模型,那么您将有一个带有后缀的分片:.data-00000-of-00001

4. 手动保存权重

上面你看到了如何将权重加载到模型中。手动保存权重同样简单,使用Model.save_weights方法。

# 保存权重model.save_weights('./checkpoints/my_checkpoint')# 加载权重model = create_model()model.load_weights('./checkpoints/my_checkpoint')loss,acc = model.evaluate(test_images, test_labels)print("Restored model, accuracy: {:5.2f}%".format(100*acc))

5. 保存整个模型

模型和优化器可以保存到包含其状态(权重和变量)和模型配置的文件中,这允许您导出模型,以便可以在不访问原始python代码的情况下使用它。由于恢复了优化器状态,您甚至可以从中断的位置恢复训练。

保存完整的模型非常有用,您可以在TensorFlow.js(HDF5, Saved Model) 中加载它们,然后在Web浏览器中训练和运行它们,或者使用TensorFlow Lite(HDF5, Saved Model)将它们转换为在移动设备上运行。

5.1. 作为HDF5文件

Keras使用HDF5标准提供基本保存格式,出于我们的目的,可以将保存的模型视为单个二进制blob。

model = create_model()model.fit(train_images, train_labels, epochs=5)# 保存整个模型到HDF5文件 model.save('my_model.h5')

现在从该文件重新创建模型:

# 重新创建完全相同的模型,包括权重和优化器new_model = keras.models.load_model('my_model.h5')new_model.summary()Model: "sequential_6"_________________________________________________________________Layer (type) Output Shape Param # =================================================================dense_12 (Dense) (None, 512) 401920 _________________________________________________________________dropout_6 (Dropout) (None, 512) 0 _________________________________________________________________dense_13 (Dense) (None, 10) 5130 =================================================================Total params: 407,050Trainable params: 407,050Non-trainable params: 0_________________________________________________________________

检查模型的准确率:

loss, acc = new_model.evaluate(test_images, test_labels)print("Restored model, accuracy: {:5.2f}%".format(100*acc))1000/1000 [==============================] - 0s 94us/sample - loss: 0.4137 - accuracy: 0.8540Restored model, accuracy: 85.40%

此方法可保存模型的所有东西:

  • 权重值
  • 模型的配置(架构)
  • 优化器配置

Keras通过检查架构来保存模型,目前它无法保存TensorFlow优化器(来自tf.train)。使用这些时,您需要在加载后重新编译模型,否则您将失去优化程序的状态。

5.2. 作为 saved_model

注意:这种保存tf.keras模型的方法是实验性的,在将来的版本中可能会有所改变。

创建一个新的模型:

model = create_model()model.fit(train_images, train_labels, epochs=5)

创建saved_model,并将其放在带时间戳的目录中:

import timesaved_model_path = "./saved_models/{}".format(int(time.time()))tf.keras.experimental.export_saved_model(model, saved_model_path)saved_model_path './saved_models/1555630614'

从保存的模型重新加载新的keras模型:

new_model = tf.keras.experimental.load_from_saved_model(saved_model_path)new_model.summary()Model: "sequential_7"_________________________________________________________________Layer (type) Output Shape Param # =================================================================dense_14 (Dense) (None, 512) 401920 _________________________________________________________________dropout_7 (Dropout) (None, 512) 0 _________________________________________________________________dense_15 (Dense) (None, 10) 5130 =================================================================Total params: 407,050Trainable params: 407,050Non-trainable params: 0_________________________________________________________________

运行加载的模型进行预测:

model.predict(test_images).shape(1000, 10)# 必须要在评估之前编译模型# 如果仅部署已保存的模型,则不需要此步骤 new_model.compile(optimizer=model.optimizer, # keep the optimizer that was loaded loss='sparse_categorical_crossentropy', metrics=['accuracy'])# 评估加载后的模型 loss, acc = new_model.evaluate(test_images, test_labels)print("Restored model, accuracy: {:5.2f}%".format(100*acc)) 1000/1000 [==============================] - 0s 102us/sample - loss: 0.4367 - accuracy: 0.8570 Restored model, accuracy: 85.70%

6. 下一步是什么

这是使用tf.keras保存和加载的快速指南。

  • tf.keras指南显示了有关使用tf.keras保存和加载模型的更多信息。
  • 在eager execution期间保存,请参阅在Saving in eager。
  • 保存和还原指南包含有关TensorFlow保存的低阶详细信息。

最新版本:http://www.mashangxue123.com/tensorflow/tf2-tutorials-keras-save_and_restore_models.html

英文版本:https://tensorflow.google.cn/alpha/tutorials/keras/save_and_restore_models

完整的教程,点击下面的“了解更多”链接

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值