例1 丁丁和小麦斯原来是一对好朋友,后来小麦斯转到另一个城市去上学。放暑假了,小麦斯邀请丁丁去他那里玩,从丁丁所在的城市到小麦斯所在的城市,每天有三趟火车、两班轮船、四班汽车,现在丁丁想去玩,请问他有多少种不同的走法?3+2+4=9(种)
加法原理:在做一件事时,如果有几类不同的方法,而且每一类方法中,又有几种可能的做法,那么,要求完成这件事有多少种做法,应当将各类方法中可能的种数加起来。
试一试:
1、书架上有10本故事书、3本历史书、12本科普读物。志远任意从书架上取一本书,有多少种不同的取法?10+3+12=25(种)
2、某趟动车组列车从南京出发开往上海,中途只停靠常州、无锡、苏州这三个站。要为这趟列车准备多少种不同的车票?4+3+2+1=10(种)
例2:从甲地到乙地有2条路可走,从乙地到丙地有3条路可走。试问从甲地经乙地到丙地共有多少种不同的走法?2×3=6(种)
乘法原理:做一件事,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事有多少种方法,应当将各个步骤中可能的方法种数乘起来。
试一试:1、书架上有4本故事书、7本科普读物。志远从书架上任取1本故事书和1本科普书,共有多少种不同的取法?4×7=28(种)
2、用9、8、7、6这4个数字可以组成多少个没有重复数字的三位数?4×3×2=24(个)
强调:加法原理与乘法原理都是用来计算完成某一件事共有多少种不同的做法的。如果完成一件事有几类方法,无论哪类方法都可以完成这件事,就用加法原理计算;如果完成一件事需分几个步骤,要依次完成每个步骤后才能完成这件工作,就要用乘法原理计算。
对比练习: 一个口袋里装有5个小球,另一个口袋里装有6个小球,这些小球的颜色互不相同。问:(1)从两个口袋里任意取1个小球,有多少种不同的取法? 5+6=11(种)
(2)从两个口袋内各取1个小球,有多少种不同的取法?5×6=30(种)
思考与练习:1、从小军、小明、小红、小丽四位小朋友中每次选两人排在一起照相,有多少种不同的排法?4×3=12(种)
2、某人到食堂去买饭,主食有4种,副食有5种,他主食和副食各买一种,共有多少种不同的买法?4×5=20(种)
3、从甲城到乙城,可乘汽车、火车或飞机。已知一天中汽车有2班,火车有4班,飞机有3班,从甲城到乙城共有多少种不同的走法?2+4+3=9(种)
4、一列火车从上海到南京,中途要经过6个站,这列火车要准备多少种不同的车票? 7+6+5+4+3+2+1=28(种)
5、衣架上有2顶帽子、4件上衣、3条裤子。从中任取1顶帽子、1件上衣、1条裤子可以组成一套装束,最多可配成多少种不同的装束?2×4×3=24(种)
6、六个球队踢足球,每两个球队都要比赛一场,一共要比赛多少场?5+4+3+2+1=15(场)
7、从10名志愿者中选取2名为青奥会服务,有多少种不同的选法?9+8+7+6+5+4+3+2+1=45(种)
8、4个人之间相互都通一次电话,一共需要通多少次电话?3+2+1=6(次)
9、小兔、小猫、小狗、小猴、小羊站成一排拍照,一共有多少种不同的站法?5×4×3×2×1=120(种)
10、6个人之间互相赠送一件礼物,6个人一共要准备多少件礼物?6×5=30(件)