变换矩阵的意思_相似变换

372e56c7597535ea7f2494c1132670be.png

相似变换

空间矢量(波函数)

维线性空间中,首先选择一组基底:

那么在此线性空间中,任一矢量

可表示为:


线性变换(线性算符)

首先,介绍一下线性变换的意思,即通过

的作用,可以将任一矢量
变换成另一矢量
,并且满足如下性质:

显然根据定义我们有:

由于基底选取的任意性,我们可以确定出唯一合适的基底

(也可以说是空间上旋转拉伸原来的基底得到新的基底),并且在此基底下矢量
的表达系数
对应系数一样(
这个结论是显然的),即:

也就是说:

我们设这个合适的基底

,显然对于每一个基矢
,都可以通过原有基矢表示出来,即:

如果我们定义这里的

不会随着选取矢量
的变化而发生变化,也就是说,算符的作用仅仅是把原线性空间
中的矢量变换到了另一线性空间
中,两者除了基矢量不同外,在各自空间中相对的大小方向均没有发生变化。

于是在此基底下表示的

即为:

我们可以发现矩阵乘法的前两项所得的结果其实就是新的基底

,任意矢量
的基底与这里的
矩阵作用,得到的新基矢去表示作用后的矢量,其对应系数不变。这个
矩阵显然就是算符
的等价表示。

相似变换

目前我们已经知道了算符作用的意义,接着我们需要回答另一个问题:

倘若我们已知矢量

在两组基底
,表示为:

并且我们已知算符

在基底
下的矩阵表达式,有了矩阵表达式,我们就可以知道线性变换后的矢量表示。

那么我们如何求算符

在基底
下的矩阵表达式
呢?(显然两者是不同的,因为对于同一矢量两者的描述可能完全不同,例如前者可能是逆时针旋
角,后者的基矢下观察可能就是顺时针旋转
角,此时的
在两者的基矢下矩阵表达式肯定是不同的。更或者在第二节内容就可以明白,将一个矢量通过线性变换得到另一个矢量,在不同基矢下,其对于基矢量的变换手段一定是不同的。)

求解:

对于某一矢量

,它在不同基矢下的表示是不同的,并且对于任意两组基底
,其各个基矢之间的关系可以如下表示:

写成矩阵形式:

于是我们对式

再进行改造:

写成矩阵形式就是:

令:

,于是:

对比

我们就可知道,这里其实就是在以
为基底下,算符
对矢量
的作用结果。

而:

即所谓的相似变换,即算符在不同基矢下的矩阵变换。

总结:

由于实际空间中并不会先天性的出现基矢量,为了定量描述各个量的变换情况,引进了基矢量的概念,算符即是绝对意义下的线性变换,即将任一矢量从原先的线性空间变换到了另一线性空间中,在变换后的空间下"观察"会发现各个量的大小方向均不会发生变化;矩阵表示即是相对某一基矢量下的变换表示。

通过相似变换我们也发现,当我们找到了算符在一组基底下的变换矩阵,即任一矢量可以在这个基底下变换到某一对应空间上,我就可以证明其余各个基矢在这个算符下都会变换到某一对应的线性空间下。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值