最小二乘拟合程序 matlab,最小二乘法圆拟合(含matlab程序及说明).ppt

最小二乘法圆拟合(含matlab程序及说明).ppt

* 最小二乘法 圆拟合 (含matlab程序及说明) 最小二乘法拟合圆曲线:令a=-2A,b=-2B,则:圆的另一形式为: * 只需求出参数a,b,c即可以求的圆半径参数: * 样本集点 到圆边缘的距离的平方与和半径平方的差为: * 下面求参数a,b,c使得Q(a,b,c)的值最小即可 * F(a,b,c)对a,b,c求偏导,令偏导等于0,得到极值点,比较所有极值点的函数值即可得到最小值。 ① ② ③ * 由 ① × N- ③ × ② × N- ③ × 且令 * 解得: Ca+Db+E=0 Da+Gb+H=0 * 得A、B、R的估计拟合值: * * t=0:0.01:pi; a=20;%设定圆心X轴数值 b=30;%设定圆心Y轴数值 r=5;%设定圆半径数值 x=a+r*cos(t)+randn(1,315); y=b+r*sin(t)+randn(1,315); plot(x,y); hold on; x=x(:); y=y(:); m=[x y ones(size(x))]\[-(x.^2+y.^2)]; xc = -.5*m(1)%拟合圆心X轴数值 yc = -.5*m(2)%拟合圆心Y轴数值 R = sqrt((m(1)^2+m(2)^2)/4-m(3))%拟合半径数值 plot(xc,yc,'r-x',(xc+R*cos(t)),(yc+R*sin(t)),'r-'); axis equal;

移动最小二乘法拟合数据软件-LeastSquareFitting1.zip 本帖最后由 jacket2015 于 2015-2-17 23:09 编辑 移动最小二乘拟合软件(附加任意已知函数最小二乘拟合以及神经网络拟合) 功能描述: 1、 本软件具有利用移动最小二乘拟合数据并提供预测的功能。该功能用来拟合n变量输入1个变量输出系统,所拟合的m组数据以m×形式按照每行n 1个数据的样式放置于txt, xls或者xlsx格式的文件中;所预测的数据为m×n形式按照每行n个数据的样式放置于txt, xls或者xlsx格式的文件中。本软件中,移动最小二乘拟合采用文献[移动最小二乘法在多功能传感器数据重构中的应用]的拟合模型。拟合支持模型优化,以尽可能地得到小的平方误差和值。该拟合支持基于1阶到4阶基函数的移动最小二乘拟合,以满足不同的精度要求。移动最小二乘拟合不给出最终拟合函数的具体形式。但给出最终的拟合误差,和数据预测。2、 本软件具有高达6个自变量,20个拟合参数的用户自定义函数的最小二乘数据拟合功能。所拟合的数据为m×形式按照每行n 1个数据的样式放置于txt, xls或者xlsx格式的文件中;所预测的数据为m×n形式按照每行n个数据的样式放置于txt, xls或者xlsx格式的文件中,其中,m为函数自变量的个数, 最大为6。拟合给出最终拟合函数的具体形式,最终的拟合误差,和数据预测。用户自定义函数需要按照格式要求由用户自行写上。3、 本软件具有神经网络拟合和预测功能。该功能可以拟合任意常见的n变量输入,m变量输出系统(一般地,n>2×m)。该功能提供3种神经网络模型(newrb,newrbe,newgrnn)。 附件
移动最小二乘法拟合数据软件-移动最小二乘拟合软件说明.pdf 本帖最后由 jacket2015 于 2015-2-17 23:09 编辑 移动最小二乘拟合软件(附加任意已知函数最小二乘拟合以及神经网络拟合) 功能描述: 1、 本软件具有利用移动最小二乘拟合数据并提供预测的功能。该功能用来拟合n变量输入1个变量输出系统,所拟合的m组数据以m×形式按照每行n 1个数据的样式放置于txt, xls或者xlsx格式的文件中;所预测的数据为m×n形式按照每行n个数据的样式放置于txt, xls或者xlsx格式的文件中。本软件中,移动最小二乘拟合采用文献[移动最小二乘法在多功能传感器数据重构中的应用]的拟合模型。拟合支持模型优化,以尽可能地得到小的平方误差和值。该拟合支持基于1阶到4阶基函数的移动最小二乘拟合,以满足不同的精度要求。移动最小二乘拟合不给出最终拟合函数的具体形式。但给出最终的拟合误差,和数据预测。2、 本软件具有高达6个自变量,20个拟合参数的用户自定义函数的最小二乘数据拟合功能。所拟合的数据为m×形式按照每行n 1个数据的样式放置于txt, xls或者xlsx格式的文件中;所预测的数据为m×n形式按照每行n个数据的样式放置于txt, xls或者xlsx格式的文件中,其中,m为函数自变量的个数, 最大为6。拟合给出最终拟合函数的具体形式,最终的拟合误差,和数据预测。用户自定义函数需要按照格式要求由用户自行写上。3、 本软件具有神经网络拟合和预测功能。该功能可以拟合任意常见的n变量输入,m变量输出系统(一般地,n>2×m)。该功能提供3种神经网络模型(newrb,newrbe,newgrnn)。 附件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值