python pytorch自定义_PyTorch使用自定义模块创建数据模型

本文介绍了如何在PyTorch中使用自定义模块创建线性回归模型。通过定义`__init__`和`forward`方法,我们可以创建一个类来初始化模型,并进行预测。示例展示了对于单个和多个数据点的预测过程。
摘要由CSDN通过智能技术生成

还有另一种查找预测的方法。在上一节中, 我们使用forward()和实现线性模型来找到预测。此方法非常有效且可靠。很容易理解和实施。

在”定制模块”中, 我们使用类创建一个定制模块, 它是init()和forward()方法和模型。 init()方法用于初始化类的新实例。在此init()方法中, 第一个参数是self, 它指示该类的实例(该对象尚未初始化), 而在其自身之后, 我们可以添加其他参数。

下一个参数是初始化线性模型的实例。在上一节中, 初始化线性模型需要输入大小以及输出大小等于1, 但是在自定义模块中, 我们传递输入大小和输出大小变量而不传递其默认值。

在这种情况下, 需要导入割炬的nn包。在此, 我们使用继承, 以便此子类将利用我们的基类和模块中的代码。

模块本身通常将充当所有神经网络模块的基类。之后, 我们创建一个模型以进行预测。

让我们看一个示例, 该示例如何通过创建自定义模块来完成预测:

对于单个数据

import torch

import torch.nn as nn

class LinearRegression(nn.Module):

def __init__(self, input_size, output_size):

super().__init__()

self.linear=nn.Linear(input_size, output_size)

def forward(self, x):

pred=self.linear(x)

return pred

torch.manual_seed(1)

model=LinearRegression(1, 1)

x=torch.tensor([1.0])

print(model.forward(x))

输出

te

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值