单方差分析MATLAB,MATLAB单因素方差分析.PDF

MATLAB单因素方差分析

MATLAB:单因素方差分析

重复数相同的方差分析

当在因素 的每一水平下重复试验次数相同,即当m  m   m 时,上

A

1 2 r

述一些表达式可以简化。若记每一水平下重复次数为 ,则效应约束条件可简化

m

r

a  0

i

i1

SSA 的计算公式可简化为

1 r 2 y2 

SSA  yi 

m i1 n

 的置信水平为1  的置信区间可改为

i

 ˆ ˆ 

 

y t f , y t f

     

i  E i  E

1 m 1 m

 2 2 

其他一切都不变。对于重复数相同的单因素方差分析,Matlab 提供了anova1

函数来处理单因素方差分析的问题。anova1 函数主要是比较多组数据的均值,

然后返回这些均值相等的概率,从而判断这一因素是否对试验指标有显著影响。

其调用格式如下:

p=anova1(X)

p=anova1(X,group)

p=anova1(X,group, ’displaypot’)

[p,table]=anoval( …)

[p,table,stats]=anova1( …)

其中,p  anova1 X 对样本 中的两列或多列数据进行均衡的单因素方差

  X

分析,以比较各列的均值。函数返回“零假设”(即 中各列的均值相同)成立

X

的概率值。如果概率值接近于零,则零假设值得怀疑,表明各列的均值事实上是

不同的。p anova 1 X ,group 对样本 中由矢量group 索引的两组或多组数据

  X

进行单因素方差分析以比较各列的均值。输入参数group 标明矢量 中相应元素

X

的组别。group 中的值为整数,最大值为需要比较的不同组的数量,最小值为1.

每组至少应有一个元素,但并不要求每组的元素个数相同,因此适合于数据不均

衡的情况,用于决定结果是否具有统计上的显著性的概率值大小限制的选择留给

用户。[p,table,stats]=anova1( …) 同时还显示一张表table 和一幅图stats 。表为标准

的ANOVA 表,表中将 中数据的变化分别分成两部分:

X

① 各列均值的差异而产生的变化。

② 由各列的数据及其均值间的差异而导致的变化。

ANOVA 表至少具有5 列数据。

① 第一列标明数据源。

② 第二列给出数据源的均方和( )。

SS

③ 第三列给出相应数据源的自由度 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值