//
相似矩阵的基本性质//
01
前言
(1)今天开始, 我们正式进入相似矩阵的学习。首先必须强调的是相似的定义: 存在可逆矩阵P, 使得P^-1AP=B, 则A~B。相似对角化问题只是在B矩阵为对角阵时的一种特殊情况。
(2)①特征多项式是行列式!特征方程呢?注意第一问应该如何证明?
利用特征多项式的定义, 证明|λE-A|=|λE-B|。注意我补充的几个关于矩阵相似的必要条件。
②问题二的证明类似之前A^k特征值的证明, 合理使用矩阵乘法的运算律做恒等变形。矩阵乘法虽然没有交换律, 但是有结合律。这里处理的方式类似“秩1”矩阵的相关思路和方法。
③矩阵多项式结论的证明类似之前矩阵多项式特征值、特征向量的证明, 请大家注意它们的联系与区别。
④关于A*的问题, 应优先考虑AA*=A*A=|A|E, 这里我们先证明关于逆矩阵的结论, 则关于伴随矩阵的结论就比较容易处理了。注意A~B可以推出|A|=|B|
02 题目 03 讲解04 文稿