e指数上矩阵运算_相似矩阵的基本性质

63a3185707c48bfee4cc5cf9bfd152a6.png

// 相似矩阵的基本性质//

96fcc759b9ba37a331883868ebe79a18.png

01 前言

(1)今天开始, 我们正式进入相似矩阵的学习。首先必须强调的是相似的定义: 存在可逆矩阵P, 使得P^-1AP=B, 则A~B。相似对角化问题只是在B矩阵为对角阵时的一种特殊情况。

(2)①特征多项式是行列式!特征方程呢?注意第一问应该如何证明?

利用特征多项式的定义, 证明|λE-A|=|λE-B|。注意我补充的几个关于矩阵相似的必要条件。

②问题二的证明类似之前A^k特征值的证明, 合理使用矩阵乘法的运算律做恒等变形。矩阵乘法虽然没有交换律, 但是有结合律。这里处理的方式类似“秩1”矩阵的相关思路和方法。

③矩阵多项式结论的证明类似之前矩阵多项式特征值、特征向量的证明, 请大家注意它们的联系与区别。

④关于A*的问题, 应优先考虑AA*=A*A=|A|E, 这里我们先证明关于逆矩阵的结论, 则关于伴随矩阵的结论就比较容易处理了。注意A~B可以推出|A|=|B|

02 题目

a4e3d9f2a93393eb600a21ec9172e6fc.png

03 讲解04 文稿

a4017fecf311824b6ea94ac094636216.png

9b92d1ace47331773d44e02b0561cfc8.gif

a470baf6d471848236d569a85b5fbc65.png

7931798dfba48b168f9ae12127014f25.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值