nfa确定化 dfa最小化_深度学习中的不确定性

原文:What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? (NIPS 2017)

深度学习模型给出的预测结果并不总是可靠的。在无人驾驶等安全性要求较高的领域中,完全依赖深度模型进行决策有可能导致灾难性的后果。如果能够让深度学习模型对于错误的预测给出一个较高的不确定性,我们就能判断一个预测结果可信程度。因此,我们需要对不确定性进行建模。

衡量不确定性最直观的方法就是方差。对于一组数据

,其方差的计算公式如下:

一个单独输出值是得不到方差的。如果说我们能够用同一个模型,对同一个样本进行T次预测,而且这T次的预测值各不相同,就能够计算方差。问题是同一个模型同一个样本,怎么得到不同的输出呢?概率学家就说了,我们让学到的模型参数

不是确定的值,而是一个分布,那么就可以从这个分布中采样,每一次采样,得到的weight都是不同的,这样结果也是不同的,目的就达到了。

但是,怎么学习这样的分布呢?概率学家又说了,有现成的呀,dropout就是。使用了dropout来训练DNN时,模型的参数可以看成是服从一个伯努利分布。在预测的时候,仍然将dropout打开,预测T次,均值就是最终的预测值,而方差就是不确定度。这样就得到深度学习的不确定度了。这种方法也被称为MC Dropout贝叶斯神经网络。

但是,不确定性有两种。一种称之为偶然不确定性(Aleatoric Uncertainty),是由于观测数据中的固有噪声导致的。这种不确定性是无法被消除的。另外一种称之为感知不确定性(Epistemic Uncertainty),与模型相关,是由于训练不完全导致的。如果给它更多的训练数据来弥补现有模型知识上的不足,这种不确定性从理论上来说是可以消除的。MC Dropout只能得到关于模型的感知不确定性,而不能捕获数据的偶然不确定性,这是有问题的。这就是本文要解决的问题了。


贝叶斯神经网络

假定模型参数服从一个高斯先验分布:

。给定观测数据集
时,可以使用贝叶斯推断来计算模型参数的后验分布
。对于回归任务,通常假定似然是一个高斯分布:
。其中,
为模型的输出,
为噪声项。而对于分类任务,则经常对输出进行归一化,用softmax对其进行压缩处理:

贝叶斯神经网络虽然很好定义,但是实际操作起来比较困难。主要原因在于边际分布

没法算。而这一项又是贝叶斯推断所必需的。因此只能通过近似的方法来逼近真实的参数分布。
贝叶斯推断公式:

Dropout变分推断是一种常用的近似方法。这种方法在除了在训练时要使用dropout之外,在预测时,也要将dropout打开,执行T次预测取其平均值。理论证明这种方法等价于在最小化KL散度。

利用Dropout进行训练时,其最小化目标为

其中,第一项为负对数似然,第二项为正则化参数。

为dropout中的随机失活率。
为数据点个数。

在回归任务中,通常假设似然是一个高斯分布,那么负对数似然可以写为如下形式:

表示模型输出值的噪声,一定意义上衡量了输出的不确定程度。

感知不确定性

感知不确定性是关于模型参数的。为了捕获这个不确定性,我们可以从模型参数的分布中采样多次,得到

个模型,用这
个模型对同一个样本做预测,看看
次的预测结果有多么的不稳定。

对于分类问题,

次预测的概率为:

其中,
。不确定性可以用熵来衡量:

对于回归问题,不确定性可以用输出值的方差来表示:

其中,
表示输出的均值。

偶然不确定性

偶然不确定性衡量的是数据本身存在的噪声,某种程度上衡量了一个instance的预测难度,因此可以将它看作是instance的一个函数:对于预测结果比较离谱的instance,这个函数值应该比较大;而对于容易预测的instance,相应的函数值应该较小。可以用以下的损失函数来对其进行建模,

即表示
偶然不确定性。这里没有对模型参数执行变分推断,而是用了MAP,只能得到一组单一的模型参数值而不是一个分布,因而也无法捕获模型参数的感知不确定性。由此而实现了两种不确定性的分离。

简单来说,感知不确定性是用多次预测结果的方差来决定的,在多次预测中,所用的模型参数都是不一样的,因此这种做法捕获了模型参数的感知不确定性。而偶然不确定性是由样本的特征决定的,和模型参数是无关的。


将两种不确定性结合

回归任务

为了将两种不确定性结合到同一个模型中,我们需要两组输出:一组是最终的预测结果

,另一组是样本的偶然不确定性
。即

通过最小化以下的损失函数来训练模型:

在论文中的深度回归任务中,

表示图片
中的像素点数量,
为像素的索引。上面的损失包含了两部分:一部分是回归模型的残差,用于捕获模型参数的感知不确定性;另一部分是像素点的偶然不确定性,充当正则化项。注意到,在学习偶然不确定性时,其实是不需要标记的。如果一个像素
很难预测对,为了最小化整个损失,
会相应地变大,而
又会防止
变得无穷大。并不需要
的ground truth。

实际训练中,

其实相当于一项自适应的权重,对于难以预测的样本,数据中存在较多的固有噪声,这项权重比较小;而对于容易预测的样本,数据中存在的固有噪声比较少,这项权重会比较大。这会让模型在训练过程中区别地对待不同的样本。

分类任务

在分类任务中,对于一个像素

,模型会输出一个预测向量
,然后再通过softmax操作得到一组概率
。假定预测向量服从一个高斯分布:

这里

是网络参数为
时的输出。相当于对向量
施加了一个方差为
的噪声。

训练模型的损失函数可以写为:

第二项实则为交叉熵损失函数化简后的结果。

交叉熵损失的简单推导:
假定一共有C个类别,像素
属于类别
,那么像素
交叉熵损失为

因为要执行T次预测,因此损失也要取T次的平均,由此得到了公式 (1)。

简单来说,贝叶斯神经网络或者MC Dropout能够捕获感知不确定性,额外添加的

则用来捕获偶然不确定性。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值