用R做meta分析(附效应量计算神器)
Hello,
这里是行上行下,我是喵君姐姐~
众所周知,R具有免费、源代码开放,以及出色的统计计算和绘图表现能力等一系列优点,颇受科研人员的喜爱。当然,这些优势在meta分析上也表现得极为突出。
本教程以标准平均差(cohen’s d)作为效应量的meta分析为例进行演示,适用于比较两种实验条件之间因变量的差异。例如“有、无干预条件下社交焦虑程度的差异”、“集中注意、分散注意条件下n-back任务的正确率差异”等等。
简单来讲,实证研究中,可以进行t检验的结果,都可以参考以下教程,对数据进行meta分析。
接下来,我们邀请到FarAway将逐步介绍用R做meta分析的基本步骤。
本文以软件实操讲解为主,如果读者对meta分析的原理感兴趣,推荐以下两本书自行学习。
1 准备
工欲善其事必先利其器,先来说说准备工作:
-
下载并安装R studio,在往期推文中我们已经详细介绍了R和Rstudio的安装教程,按步骤操作即可!
-
安装三个工具包:meta、metafor和xlsx
-
准备好上述需要进行meta分析的数据,存放在电脑中,以备调用。
为方便讲解,我们引用了《meta分析导论》里的一组数据,如下:
从左到右,依次是纳入的研究效应量的编号(No)、第一作者的姓名(author)、发表年份(year)、实验组因变量均值(exp_mean)、实验组均值的标准差(exp_sd)、实验组样本量(exp_n)、控制组因变量均值(con_mean)、控制组均值的标准差(con_sd)、控制组样本量(con_n)、效应量(cohen’s d)、效应量95%置信区间下限(lower)、效应量95%置信区间上限(upper)、施测的地区(area)。
从上到下,每一行数据都代表一个原始研究(single study)的一个效应量,如果一个原始研究中包括多个效应量(如:有好几个实验(或成对比较)及其结果),那么每一个效应量应该作为独立的一行列在表格中。
我们注意到,很多实证研究中只报告均值、标准差/标准误、样本量等描述统计结果,并未提供效应量,因此,通常在meta分析前,我们需要自己计算效应量及其置信区间。文末有效应量计算工具的推荐。
2 配置环境和工具包
相信用过R软件的小伙伴一定对工具包的安装不陌生(可参见:R语