用R做meta分析(附效应量计算神器)

本教程详细演示如何利用R进行meta分析,包括环境配置、数据导入、效应量计算、森林图绘制、发表偏倚检验、亚组分析、元回归和敏感性分析等步骤。适合需要进行meta分析的科研人员参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

img
img
Hello,
这里是行上行下,我是喵君姐姐~

众所周知,R具有免费、源代码开放,以及出色的统计计算和绘图表现能力等一系列优点,颇受科研人员的喜爱。当然,这些优势在meta分析上也表现得极为突出。

本教程以标准平均差(cohen’s d)作为效应量的meta分析为例进行演示,适用于比较两种实验条件之间因变量的差异。例如“有、无干预条件下社交焦虑程度的差异”、“集中注意、分散注意条件下n-back任务的正确率差异”等等。

简单来讲,实证研究中,可以进行t检验的结果,都可以参考以下教程,对数据进行meta分析。

接下来,我们邀请到FarAway将逐步介绍用R做meta分析的基本步骤。

本文以软件实操讲解为主,如果读者对meta分析的原理感兴趣,推荐以下两本书自行学习。
img
img

(扫码即可购买,满100减50,还可叠加优惠券哟~)

1 准备

工欲善其事必先利其器,先来说说准备工作:

  1. 下载并安装R studio,在往期推文中我们已经详细介绍了R和Rstudio的安装教程,按步骤操作即可!

  2. 安装三个工具包:meta、metafor和xlsx

  3. 准备好上述需要进行meta分析的数据,存放在电脑中,以备调用。

为方便讲解,我们引用了《meta分析导论》里的一组数据,如下:
img
从左到右,依次是纳入的研究效应量的编号(No)、第一作者的姓名(author)、发表年份(year)、实验组因变量均值(exp_mean)、实验组均值的标准差(exp_sd)、实验组样本量(exp_n)、控制组因变量均值(con_mean)、控制组均值的标准差(con_sd)、控制组样本量(con_n)、效应量(cohen’s d)、效应量95%置信区间下限(lower)、效应量95%置信区间上限(upper)、施测的地区(area)。

从上到下,每一行数据都代表一个原始研究(single study)的一个效应量,如果一个原始研究中包括多个效应量(如:有好几个实验(或成对比较)及其结果),那么每一个效应量应该作为独立的一行列在表格中。

我们注意到,很多实证研究中只报告均值、标准差/标准误、样本量等描述统计结果,并未提供效应量,因此,通常在meta分析前,我们需要自己计算效应量及其置信区间。文末有效应量计算工具的推荐。

2 配置环境和工具包

相信用过R软件的小伙伴一定对工具包的安装不陌生(可参见:R语

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

壹脑云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值