高等代数(四)-矩阵03:矩阵乘积的行列式与秩

本文探讨了矩阵乘积的行列式和秩与其因子之间的关系。定理表明矩阵乘积的行列式等于因子行列式的乘积,而乘积的秩不超过各因子的秩。此外,退化矩阵的条件以及非退化矩阵的特征也得到了阐述。
摘要由CSDN通过智能技术生成

§ 3 § 3 §3 矩阵乘积的行列式与秩
在这一节我们来看一下矩阵乘积的行列式与秩和它的因子的行列式与秋的关系.
关于乘积的行列式有
定理 1 设 A , B \boldsymbol{A}, \boldsymbol{B} A,B 是数域 P P P 上的两个
n × n n \times n n×n 矩阵,那么
∣ A B ˙ ∣ = ∣ A ∣ ∣ B ∣ .  |\dot{A B}|=|A||B| \text {. } AB˙=A∣∣B
即矩阵乘积的行列式等于它的因子的行列式的乘积.
证明 这是第二章 88 中已经证明了的结论.
用数学归纳法, 定理 1 不难推广到多个因子的情形, 即有
推论 1 设
A 1 , A 2 , ⋯   , A m \boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \cdots, \boldsymbol{A}_{m} A1,A2,,Am
都是数域 P P P 上的 n × n n \times n n×n 矩阵,于是
∣ A 1 A 2 ⋯ A ˙ m ∣ = ∣ A 1 ∣ ∣ A 2 ∣ ⋯ ∣ A ˙ m ∣ ⋅ I \left|\boldsymbol{A}_{1} \boldsymbol{A}_{2} \cdots \dot{A}_{m}\right|=\left|\boldsymbol{A}_{1}\right|\left|\boldsymbol{A}_{2}\right| \cdots\left|\dot{A}_{m}\right| \cdot \mathbf{I} A1A2A˙m =A1A2 A˙m I
定义 6 数域 P P P 上的 n × n n \times n n×n 矩阵 A \boldsymbol{A} A 称为非退化的,
如果 ∣ A ∣ ≠ 0 |\boldsymbol{A}| \neq 0 A=0; 否则称为退化的.
显然, 一 n × n n \times n n×n 矩阵是非退化的充分必要条件是它的秩等于 n n n.
从定理 1 ,立刻推出
推论 2 设 A , B \boldsymbol{A}, \boldsymbol{B} A,B 是数域 P P P n × n n \times n n×n
矩阵, 矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值