随机算法思想, 使用循环不变式证明一个O(n)时间的随机排列算法

1. 随机算法

1.1 WHY

  一个非常显而易见的是事实是: 算法的运行时间常常和输入相关。一个最简单的例子是排序算法, 如果我的输入是已经排好序的算法,那么我就可以不用再排序了。(原始版本的快速排序算法可能不这么认为)。
  虽然当我们进行算法分析的时候,常常使用下界来进行分析, 但是有时候知道平均(期望)运行时间是很有必要的。但是当提到期望的时候, 我们不得不对数据的分布做出假设,才有机会分析他的平均情况。但是我们无法知道数据的分布, 或者无法判断我们的输入到底是不是我们猜测的分布。所以,对于不确定的输入,我们无法确定一个算法运行的数学期望。
  但是, 我们可以对任意的输入随机化, 将其转化到一个我们确定的分布里面去。然后我们就可以计算该算法运行的期望了。并且特别的, 没有任何一个特定输入会造成该算法处于最劣运行时间,这也是随机化算法的一个非常重要的特性。

1.2 HOW

  毫无疑问, 第一步我们要把一个输入规模为n的输入序列打散, 并且要求其满足一定的概率分布。什么分布呢?最直观也最正确的选择是平均分布,即每种排列出现的机率均为 1 / n ! 1/n! 1/n!。额外的一点思考,如果我们可以选择让打散后的概率更集中于某一种分布(而无论输入如何), 我们是否可以人为的使用在这样的概率密度高的地方表现更加的算法呢?。

1.2.1 暴力随机排列

  最简单暴力的方法是不停地随机生成 1 ~ n之间的数字作为输入序列下标, 并且和已经选择过的下标去重操作, 直到选出所有的下标。不幸的是这种算法的时间效率奇低,目前我没有专门的思考过这个算法的期望运行时间是多少,但是我相信会在 n ∗ l g n n * lgn nlgn左右, 先挖个坑,如果有空了我会尝试来解决这个问题。

1.2.2 优先级算法

  第二个简单的想法是给每一个输入元素随机指定一个优先级, 然后根据优先级重新排列这个输入。对于一个通用的比较排序, 其时间复杂度是 n ∗ l g n n * lgn nlgn, 但是《算法导论》上提到,存在一个能在 O ( n ) O(n) O(n) 内解决1 ~

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值