ollama + autogen排雷

语法:<abc>代表参数,实际输入为具体的名字,不需要输入<>

注意:当前雷可能随着版本迭代更新掉

1、litellm -model ollama/<model>

        启动后的url为:http://0.0.0.0:<port>,实际调用需要将"0.0.0.0"替换为"localhost",否则回报错误"oserror winerror 10049在其上下文中该请求的地址无效"

2、autogen.UserProxyAgent在非docker环境下,需要增加参数

code_execution_config={"use_docker":False}

否则,会报错。前半句是问题,后半句是建议的解决方法,这里采用的是第二种

Code execution is set to be run in docker (default behaviour) but docker is not running. The options available are: - Make sure docker is running (advised approach for code execution) - Set "use_docker": False in code_execution_config - Set AUTOGEN_USE_DOCKER to

"0/False/no" in your environment variables

3、ImportError: cannot import name 'AssistantAgent' from 'autogen'

原因是应该pip install pyautogen,而不是pip install autogen

4、ollama 更改模型存储路径

默认是在C盘/<当前用户>,增加环境变量“OLLAMA_MODELS:<想要存储的路径>”,即可。

但是,切记一定要重启ollama,才能生效。

<think>好的,我现在要回答用户关于Ollama与LLM的关系以及如何使用它们的问题。首先,我需要理解用户的需求,他们可能想了解Ollama如何帮助管理和运行本地的大语言模型,以及具体的集成方法。用户提到了教程和集成方案,所以需要涵盖安装步骤、基本使用、以及与其他工具的整合。 首先,根据提供的引用,引用[4]提到Ollama支持多种LLM,如Llama3、DeepSeek-R1等,并且方便切换和管理模型,这说明Ollama是一个管理工具。引用[1]提到Ollama的更新使其能够使用OpenAI的API,这可能与集成Autogen有关。引用[3]和[2]则涉及与LobeChat和Next.js的集成,需要介绍这些方案。 接下来,我需要整理Ollama的基本功能,安装步骤。引用[5]提到了创建运行目录,可能涉及安装后的配置。然后,基本使用包括模型下载、运行、API调用,比如通过curl发送请求。这部分需要确保命令正确,符合用户的操作习惯。 关于集成方案,Autogen的整合需要说明如何设置Ollama作为本地服务,并修改Autogen的配置指向本地API端点。引用[1]中的信息需要在这里应用。Next.js的UI整合引用[2],需要提到项目地址和使用方法。LobeChat的集成引用[3],需要指导用户如何设置Ollama的访问地址。 此外,需要注意用户可能遇到的常见问题,比如非本地访问Ollama的方法,引用[3]提到可能需要配置服务端地址。性能优化部分,可以建议使用量化模型,如引用[4]中的轻量化设计,以及硬件加速方法。 最后,生成相关问题时要围绕用户可能的后续疑问,如性能优化、模型管理、应用场景等,确保覆盖用户潜在的需求。 需要检查所有引用是否正确应用,确保每个步骤都有对应的引用支持,避免错误信息。同时,按照用户的要求,使用中文回答,结构清晰,分步骤说明,代码块正确使用格式,数学表达式使用$符号。</think>### Ollama与LLM的关系及使用教程 Ollama 是一个专为本地大语言模型(LLM)管理设计的工具,提供模型下载、版本切换、轻量化部署等功能[^4]。它通过命令行和API接口简化了开源LLM的本地化使用流程,支持与多种开发框架(如Autogen、Next.js、LobeChat)集成。 --- #### 一、Ollama核心功能 1. **模型管理** - 支持Llama3、DeepSeek-R1、Alpaca等主流开源模型[^4] - 通过`ollama pull <模型名>`下载模型,例如: ```bash ollama pull llama3:8b # 下载Llama3-8B量化版 ``` 2. **本地推理服务** 运行模型后,Ollama会启动本地API服务(默认端口`11434`),可通过HTTP请求调用: ```bash curl http://localhost:11434/api/generate -d '{ "model": "llama3", "prompt": "你好,介绍一下Ollama" }' ``` --- #### 二、Ollama安装步骤 1. **Linux/macOS安装** ```bash curl -fsSL https://ollama.com/install.sh | sh ollama serve # 启动服务 ``` 2. **Windows安装** 下载安装包后执行: ```powershell winget install ollama ollama serve ``` 3. **Docker部署**(引用[5]) ```bash mkdir ollama-demo && cd ollama-demo docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama ``` --- #### 三、Ollama与LLM集成方案 1. **Autogen本地LLM支持**(引用[1]) 修改Autogen配置指向Ollama API: ```python from autogen import oai oai.config_list = [{ "model": "llama3", "api_base": "http://localhost:11434/v1", "api_key": "ollama" # 任意非空值 }] ``` 2. **Next.js Web UI集成**(引用[2]) 使用[nextjs-ollama-llm-ui](https://gitcode.com/gh_mirrors/ne/nextjs-ollama-llm-ui)项目: ```bash git clone https://gitcode.com/gh_mirrors/ne/nextjs-ollama-llm-ui cd nextjs-ollama-llm-ui npm install && npm run dev ``` 3. **LobeChat对话界面**(引用[3]) 在设置中添加Ollama服务地址: ``` 设置 → 语言模型 → Ollama → 服务地址: http://localhost:11434 ``` --- #### 四、性能优化建议 1. 使用量化模型(如`llama3:8b-q4_K_M`)降低显存占用 2. 启用GPU加速: ```bash CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python ``` 3. 调整上下文长度参数`--num_ctx 4096`提升长文本处理能力 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值